Log in

Improvement of Nannochloropsis oceanica growth performance through chemical mutation and characterization of fast growth physiology by transcriptome profiling

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Nannochloropsis oceanica promises to be an industrial-level producer of polyunsaturated fatty acids. In this study, the fastest and slowest growing N. oceanica mutants were selected through N-methyl-N’-nitro-N-nitrosoguanidine mutation, and two mutant strains and the wild type (WT) subjected to transcriptome profiling. It was found that the OD680 reads at stationary growth phase of both WT and its mutants were proportional to their cell density, thus indicating their division rate and growth speed during culture. This chemical mutation was effective for improving growth performance, and the fast strain divided faster by upregulating the expression of genes functioning in the cell cycle and downregulating genes involved in synthesis of amino acids, fatty acids, and sugars as well as the construction of ribosome and photosynthetic machinery. However, the relationship among the effected genes responsible for cell cycle, metabolism of fatty and amino acids, and construction of ribosome and photosynthetic machinery remained unclear. Further genetic studies are required for clarifying the genetic/metabolic networks underpinning the growth performance of N. oceanica. These findings demonstrated that this mutation strategy was effective for improving the growth performance of this species and explored a means of microalgal genetic improvement, particularly in species possessing a monoploid nucleus and asexual reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A. 1987. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass, 12(1): 37–47.

    Article  Google Scholar 

  • Chepurnov V A, Chaerle P, Roef L, Meirhaeghe A, Vanhoutte K. 2011. Classical breeding in diatoms: scientific background and practical perspectives. In: Seckbach J, Kociolek J P eds. The Diatom World. Springer, Netherlands. p.167–194.

    Chapter  Google Scholar 

  • Fang M Y, ** L H, Zhang C, Tan Y Y, Jiang P X, Ge N, Li H P, **ng X H. 2013. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS One, 8(10): e77046.

    Article  Google Scholar 

  • Gao C F, Wang Y, Shen Y, Yan D, He X, Dai J B, Wu Q Y. 2014. Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics, 15: 582.

    Article  Google Scholar 

  • Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644–652.

    Article  Google Scholar 

  • Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Springer US, New York, America. p.29–60.

    Chapter  Google Scholar 

  • Guillard R R, Ryther J H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2): 229–239.

    Article  Google Scholar 

  • Guo L, Yang G P. 2015. The mechanism of the acclimation of Nannochloropsis oceanica to freshwater deduced from its transcriptome profiles. Journal of Ocean University of China, 14(5): 922–930.

    Article  Google Scholar 

  • He M, Wang Y, Hua W P, Zhang Y, Wang Z Z. 2012. De Novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PLoS One, 7(7): e42081.

    Article  Google Scholar 

  • **kerson R E, Jonikas M C. 2015. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. The Plant Journal, 82(3): 393–412.

    Article  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(S1): D480–D484.

    Google Scholar 

  • Kawata Y, Yamano N, Kojima H, Itoh S. 1991. Expression of salmon growth hormone in the cyanobacterium Agmenellum quadruplicatum. Biotechnology Letters, 13(12): 851–856.

    Article  Google Scholar 

  • Kim S, Kim M J, Jung M G, Lee S, Baek Y S, Kang S H, Choi H G. 2013. De novo transcriptome analysis of an Arctic microalga, Chlamydomonas sp. Genes & Genomics, 35(2): 215–223.

    Article  Google Scholar 

  • Lee R W, Jones R F. 1976. Lethal and mutagenic effects of nitrosoguanidine on synchronized Chlamydomonas. Molecular and General Genetics, 147(3): 283–289.

    Article  Google Scholar 

  • Li B, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12: 323.

    Article  Google Scholar 

  • Mao X Z, Cai T, Olyarchuk J G, Wei L P. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21(19): 3787–3793.

    Article  Google Scholar 

  • Mardis E R. 2008. The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3): 133–141.

    Article  Google Scholar 

  • Nečas J. 1975. Physiological and mutagenic effects of N-methyl-N’-nitro-N-nitrosoguanidine in populations of chlorococcal algae. Biologia Plantarum, 17(2): 130–138.

    Article  Google Scholar 

  • Ortiz-Marquez J C F, Nascimento M D, Zehr J P, Curatti L. 2013. Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends in Biotechnology, 31(9): 521–529.

    Article  Google Scholar 

  • Ouyang L L, Chen S H, Li Y, Zhou Z G. 2013. Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14: 396.

    Article  Google Scholar 

  • Pan K H, Qin J J, Li S, Dai W K, Zhu B H, ** Y C, Yu W G, Yang G P, Li D F. 2011. Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (eustigmatophyceae) as revealed by its genome sequence. Journal of Phycology, 47(6): 1425–1432.

    Article  Google Scholar 

  • Petkov G, Ivanova A, Iliev A, Vaseva I. 2012. A critical look at the microalgae biodiesel. European Journal of Lipid Science and Technology, 114(2): 103–111.

    Article  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu B Z, Hsin C, Peccia J. 2012. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnology for Biofuels, 5(1): 74.

    Article  Google Scholar 

  • Storey J D, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100(16): 9440–9445.

    Article  Google Scholar 

  • Sukenik A, Carmeli Y, Berner T. 1989. Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp. Journal of Phycology, 25(4): 686–692.

    Article  Google Scholar 

  • Takouridis S J, Tribe D E, Gras S L, Martin G J O. 2015. The selective breeding of the freshwater microalga Chlamydomonas reinhardtii for growth in salinity. Bioresource Technology, 184: 18–22.

    Article  Google Scholar 

  • Tang M L, Yu Z L. 2007. Bioeffects of low energy ion beam implantation: DNA damage, mutation and gene transter. Plasma Science and Technology, 9(4): 513–518.

    Article  Google Scholar 

  • Tilman D, Socolow R, Foley J A, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. 2009. Beneficial biofuels-the food, energy, and environment trilemma. Science, 325(5938): 270–271.

    Article  Google Scholar 

  • Tjahjono A E, Kakizono T, Hayama Y, Nishio N, Nagai S. 1994. Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers. Journal of Fermentation and Bioengineering, 77(4): 352–357.

    Article  Google Scholar 

  • Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5): 511–515.

    Article  Google Scholar 

  • Wijffels R H, Barbosa M J. 2010. An outlook on microalgal biofuels. Science, 329(5993): 796–799.

    Article  Google Scholar 

  • Xue J, Niu Y F, Huang T, Yang W D, Liu J S, Li H Y. 2015. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metabolic Engineering, 27: 1–9.

    Article  Google Scholar 

  • Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 11(2): R14.

    Article  Google Scholar 

  • Zhang D H, Lee Y K. 1997. Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. Journal of Applied Phycology, 9(5): 459–463.

    Article  Google Scholar 

  • Zhang N, Yu L. 2009. Mutation breeding of β-carotene producing strain B. trispora by low energy ion implantation. Plasma Science and Technology, 11(1): 110–115.

    Article  Google Scholar 

  • Zhang X, Zhang X F, Li H P, Wang L Y, Zhang C, **ng X H, Bao C Y. 2014. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Applied Microbiology and Biotechnology, 98(12): 5387–5396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanpin Yang  (杨官品).

Additional information

Supported by the National Natural Science Foundation of China (No. 31270408) and the National High Technology Research and Development Program of China (863 Program) (No. 2014AA022001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Guo, L., Lin, G. et al. Improvement of Nannochloropsis oceanica growth performance through chemical mutation and characterization of fast growth physiology by transcriptome profiling. Chin. J. Ocean. Limnol. 35, 792–802 (2017). https://doi.org/10.1007/s00343-017-6023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6023-7

Keywords

Navigation