Log in

Effect of wave-induced Stokes drift on the dynamics of ocean mixed layer

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The wave-forcing ‘Coriolis-Stokes forcing’ and ‘Stokes-vortex force’ induced by Stokes drift affect the upper ocean jointly. To study the effect of the wave-induced Stokes drift on the dynamics of the ocean mixed layer, a new three-dimensional (3D) numerical model is derived using the primitive basic equations and Eulerian wave averaging. The Princeton Ocean Model (POM), a 3D primitive equation ocean model is used with the upper wave-averaged basic equations. The global ocean circulation is simulated using the POM model, and the Stokes drift is evaluated based on the wave data generated by WAVEWATCH III. We compared simulations with and without the Stokes drift. The results show that the magnitude of the Stokes drift is comparable with the Eulerian mean current. Including the Stokes drift in the ocean model affects both the Eulerian current and the Lagranian drift and causes the vertical mixing coefficients to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardhuin F, Marié L, Rascle N, Forget P, Roland A. 2009. Observation and estimation of Lagrangian, stokes, and Eulerian currents induced by wind and waves at the sea surface. Journal of Physical Oceanography, 39(11): 2 820–2 838.

    Article  Google Scholar 

  • Ardhuin F, Rascle N, Belibassakis K A. 2008. Explicit wave averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling, 20: 35–60.

    Article  Google Scholar 

  • Blumberg A F, Mellor G L. 1987. A description of a three-dimensional coastal ocean circulation model. In: Heaps N ed. Three-Dimensional Coastal Ocean Models. Coastal and Estuarine Study, Washington USA. p.1–16.

    Chapter  Google Scholar 

  • Craik A D, Leibovich S. 1976. A rational model for Langmuir circulations. Journal of Fluid Mechanics, 73: 401–426.

    Article  Google Scholar 

  • Craik A D. 1977. The generation of Langmuir circulation by an instability mechanism. Journal of Fluid Mechanics, 125: 37–52.

    Article  Google Scholar 

  • Dobson F, Perrie W, Toulany B. 1989. On the deep water fetch laws for wind-generated surface gravity waves. Atmos. Ocean, 27: 210–236.

    Article  Google Scholar 

  • Hasselmann K. 1970. Wave-driven inertial oscillations. Geophysical Fluid Dynamics, 1: 463–502.

    Article  Google Scholar 

  • Holm D D. 1996. The ideal Craik-Leibovich equations. Physica D, 98: 415–441.

    Article  Google Scholar 

  • Jenkins A D. 1986. A theory for steady and variable wind- and wave-induced currents. Journal of Physical Oceanography, 16: 1 370–1 377.

    Article  Google Scholar 

  • Kantha L H, Clayson C A. 1994. An improved mixed layer model for geophysical applications. Journal of Geophysical Research, 99(C12): 25 235–25 266.

    Article  Google Scholar 

  • Kenyon K E. 1970. Stokes transport. Journal of Geophysical Research, 75: 1 133–1 135.

    Article  Google Scholar 

  • Lane E M, Restrepo J M, McWilliams J C. 2007. Wave-current interaction: a comparison of radiation-stress and vortexforce representations. Journal of Physical Oceanography, 37: 1 122–1 141.

    Article  Google Scholar 

  • Langmuir I. 1983. Surface motion of water induced by wind. Science, 87: 119–123.

    Article  Google Scholar 

  • Longuet-Higgins M S, Stewart R W. 1960. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8: 565–583.

    Article  Google Scholar 

  • Longuet-Higgins M S, Stewart R W. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics, 10: 529–549.

    Article  Google Scholar 

  • McWilliams J C, Restrepo J M. 1999. The wave-driven ocean circulation. Journal of Physical Oceanography, 29: 2 523–2 540.

    Article  Google Scholar 

  • McWilliams J C, Sullivan P P. 2001. Vertical mixing of Langmuir circulations. Spill and Science Technology, 6: 225–238.

    Article  Google Scholar 

  • McWilliams J C, Testrepo J M, Lane E M. 2004. An asymptotic theory for the ocean. Journal of Fluid Mechanics, 511: 135–178.

    Article  Google Scholar 

  • McWillianms J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334: 1–30.

    Article  Google Scholar 

  • Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31: 1 791–1 806.

    Article  Google Scholar 

  • Mellor G L, Ymadaa T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20: 851–875.

    Article  Google Scholar 

  • Newberger P A, Allen J S. 2007a. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation. Journal of Geophysical Research, 112: C08018, http://onlinelibrary.wiley.com/10.1029/2006JC003472.

    Google Scholar 

  • Newberger P A, Allen J S. 2007b. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94. Journal of Geophysical Research, 112: C08019, http://onlinelibrary.wiley.com/10.1029/2006JC003474.

    Google Scholar 

  • Perrie W, Hu Y C. 1997. Air-ice-ocean momentum exchange. Part II: ice drift. Journal of Physical Oceanography, 27(9): 1 976–1 996.

    Article  Google Scholar 

  • Philips O M. 1977. The Dynamics of the Upper Ocean. Cambridge University Press. Cambridge, 336p.

    Google Scholar 

  • Polton J A, Belcher S E. 2007. Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. Journal of Geophysical Research, 112: C09020, http://onlinelibrary.wiley.com/10.1029/2007JC004205.

    Article  Google Scholar 

  • Polton J A, Lewis D M, Belcher S E. 2005. Belcher. The role of wave-induced Coriolis-Stokes forcing on the winddriven mixed layer. Journal of Physical Oceanography, 35: 444–457.

    Article  Google Scholar 

  • Qiao F L, Yang, Y Z, **a C S et al. 2008. The role of surface waves in the ocean mixed layer. Acta Oceanologica Sinica, 27(3): 30–37.

    Google Scholar 

  • Qiao F L, Yuan Y L, Yang Y Z et al. 2004. Wave-induced mixing in the upper ocean: Distribution and application in a global ocean circulation model. Geophys. Res. Lett., 31: L11303, http://preview.onlinelibrary.wiley.com/10.1029/2004GL019824.

    Article  Google Scholar 

  • Rascle N, Ardhuin F, Terray E A. 2006. Drift and mixing under the ocean surface. a coherent one-dimensional description with application to unstratified conditions. Journal of Geophysical Research, 111: C03016, http://preview.onlinelibrary.wiley.com/10.1029/2005JC003004.

    Article  Google Scholar 

  • Shay L K, Martinez-Pedraja J, Cook T M, Haus B K. 2007. High-frequency radar map** of surface currents using WERA. J. Atmos. Oceanic Technol., 24: 484–503.

    Article  Google Scholar 

  • Stokes G G. 1984. On the theory of oscillatory waves. Trans. Cambridge Philosophical Society, 8: 441–455.

    Google Scholar 

  • Sullivan P P, McWilliams J C, Melville W K. 2007. Surface gravity wave effects in the oceanic boundary layer: largeeddy simulation with vortex force and stochastic breakers. Journal of Fluid Mechanics, 593: 405–452.

    Article  Google Scholar 

  • Sullivan P P, McWilliams J C. 2010. Dynamics of winds and currents coupled to surface waves. Annual Review of Fluid Mechanics, 42: 19–42.

    Article  Google Scholar 

  • Uchiyama Y, McWilliams J C, Restrepo J M. 2009. Wavecurrent interaction in nearshore shear instability analyzed with a vortex-force formalism. Journal of Geophysical Research, 114: C06021, http://preview.onlinelibrary.wiley.com/10.1029/2008JC005135.

    Article  Google Scholar 

  • Uchiyama Y, McWilliams J C. 2008. Infragravity waves in the deep ocean: generation, propagation, and seismic hum excitation. Journal of Geophysical Research, 113: C07029, http://dx.doi.org/10.1029/2007JC004562.

    Article  Google Scholar 

  • Wu K J, Liu B. 2008. Stokes drift-induced and direct wind energy inputs into the Ekman layer within the Antarctic Circumpolar Current. Journal of Geophysical Research, 113: C10002, http://preview.onlinelibrary.wiley.com/10.1029/2007JC004579.

    Article  Google Scholar 

  • Wu K J, Yang Z L, Liu B et al. 2008. Wave energy input into the Ekman layer. Science in China Series D: Earth Sciences, 51: 134–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejian Wu  (吴克俭).

Additional information

Supported by the National Natural Science Foundation of China (No. 41376028) and the Open Fund of the Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China (No. 201362045)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, K., Dong, S. et al. Effect of wave-induced Stokes drift on the dynamics of ocean mixed layer. Chin. J. Ocean. Limnol. 33, 233–242 (2015). https://doi.org/10.1007/s00343-015-4036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4036-7

Keyword

Navigation