Log in

Practical quantum repeaters with parametric down-conversion sources

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Conventional wisdom suggests that realistic quantum repeaters will require quasi-deterministic sources of entangled photon pairs. In contrast, we here study a quantum repeater architecture that uses simple parametric down-conversion sources, as well as frequency-multiplexed multimode quantum memories and photon-number-resolving detectors. We show that this approach can significantly extend quantum communication distances compared to direct transmission. This shows that important trade-offs are possible between the different components of quantum repeater architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  2. H.J. Kimble, Nature 253, 1023 (2008)

    Article  ADS  Google Scholar 

  3. M. Takeoka, S. Guha, M.M. Wilde, Nat. Commun. 5, 5235 (2014)

    Article  ADS  Google Scholar 

  4. W. Dür, H.-J. Briegel, J.I. Cirac, P. Zoller, Phys. Rev. A 59, 169 (1999)

    Article  ADS  Google Scholar 

  5. L. Jiang, J.M. Taylor, K. Nemoto, W.J. Munro, R. Van Meter, M.D. Lukin, Phys. Rev. A 79, 032325 (2009)

    Article  ADS  Google Scholar 

  6. S. Muralidharan, J. Kim, N. Lütkenhaus, M.D. Lukin, L. Jiang, Phys. Rev. Lett. 112, 250501 (2014)

    Article  ADS  Google Scholar 

  7. K. Boone, J.-P. Bourgoin, E. Meyer-Scott, K. Heshami, T. Jennewein, C. Simon, Phys. Rev. A 91, 052325 (2015)

    Article  ADS  Google Scholar 

  8. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  9. L.M. Duan, M. Lukin, I. Cirac, P. Zoller, Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  10. C.W. Chou, J. Laurat, H. Deng, K.S. Choi, H. de Riedmatten, D. Felinto, H.J. Kimble, Science 316, 1316 (2007)

    Article  ADS  Google Scholar 

  11. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, N. Gisin, Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  12. W. Tittel, M. Afzelius, T. Thaneliere, R.L. Cone, S. Kroll, S.A. Moiseev, M. Sellars, Laser Photonic Rev. 4, 244 (2010)

    Article  Google Scholar 

  13. M.P. Hedges, J.J. Longdell, Y. Li, M.J. Sellars, Nature 465, 1052 (2010)

    Article  ADS  Google Scholar 

  14. C. Clausen et al., Nature 469, 508 (2011)

    Article  ADS  Google Scholar 

  15. E. Saglamyurek et al., Nature 469, 512 (2011)

    Article  ADS  Google Scholar 

  16. I. Usmani et al., Nat. Photonics 6, 234 (2012)

    Article  ADS  Google Scholar 

  17. F. Bussieres et al., Nat. Photonics 8, 775 (2014)

    Article  ADS  Google Scholar 

  18. M. Zhong et al., Nature 517, 177 (2015)

    Article  ADS  Google Scholar 

  19. H. De Riedmatten, M. Afzelius, M.U. Staudt, C. Simon, N. Gisin, Nature 456, 733 (2008)

    Article  Google Scholar 

  20. M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, Phys. Rev. A 79, 052329 (2009)

    Article  ADS  Google Scholar 

  21. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Min’ar, H. de Riedmatten, N. Gisin, S. Kröll, Phys. Rev. Lett. 104, 040503 (2010)

    Article  ADS  Google Scholar 

  22. N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. de Riedmatten, J.-W. Pan, N. Gisin, Phys. Rev. A 77, 062301 (2008)

    Article  ADS  Google Scholar 

  23. N. Sinclair et al., Phys. Rev. Lett. 113, 053603 (2014)

    Article  ADS  Google Scholar 

  24. A. Dousse et al., Nature 466, 217 (2010)

    Article  ADS  Google Scholar 

  25. Y.-P. Huang, P. Kumar, Phys. Rev. Lett. 108, 030502 (2012)

    Article  ADS  Google Scholar 

  26. M. Takeoka, R.-B. **, M. Sasaki, New J. Phys. 17, 043030 (2015)

    Article  ADS  Google Scholar 

  27. A. Khalique, B.C. Sanders. ar**v:1501.03317

  28. S. Guha, H. Krovi, C.A. Fuchs, Z. Dutton, J.A. Slater, C. Simon, W. Tittel, Phys. Rev. A 92, 022357 (2015)

    Article  ADS  Google Scholar 

  29. S.L. Braunstein, A. Mann, Phys. Rev. A 51, R1727–R1730 (1995)

    Article  ADS  Google Scholar 

  30. J. Calsamiglia, N. Lütkenhaus, Appl. Phys. B 72, 67 (2001)

    Article  ADS  Google Scholar 

  31. M.S. Allman et al., ar**v:1504.02812

  32. P. Kok, S.L. Braunstein, Phys. Rev. A 61, 042304 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. A.E. Lita, A. Miller, S.W. Nam, Opt. Exp. 16, 3032 (2008)

    Article  ADS  Google Scholar 

  34. Z.Y. Ou, Y.J. Lu, Phys. Rev. Lett. 88, 2556 (1999)

    Article  ADS  Google Scholar 

  35. E. Pomarico et al., New J. Phys. 14, 033008 (2012)

    Article  ADS  Google Scholar 

  36. F. Marsili et al., Nat. Photonics 7, 210 (2013)

    Article  ADS  Google Scholar 

  37. For a commercial device with 45 MHz resolution. See http://www.ltb-berlin.de/Specifications.113.0.html

  38. Private communication with Matthew Shaw and Francesco Marsili

  39. Y. Sun, C.W. Thiel, R.L. Cone, Phys. Rev. B 85, 165106 (2012)

    Article  ADS  Google Scholar 

  40. C.W. Thiel, N. Sinclair, W. Tittel, R.L. Cone, Phys. Rev. Lett. 113, 160501 (2014)

    Article  ADS  Google Scholar 

  41. Y.C. Sun, Rare earth materials in optical storage and data processing applications, in Spectroscopic properties of rare earths in optical materials. Springer series in materials science, chapter 7, vol. 83, ed. by B. Jacquier, L. Guokui (Springer, Berlin, 2005), pp. 379–429

    Google Scholar 

  42. M. Afzelius, C. Simon, Phys. Rev. A 82, 022310 (2010)

    Article  ADS  Google Scholar 

  43. M. Sabooni, Q. Li, S. Kröll, L. Rippe, Phys. Rev. Lett. 110, 133604 (2013)

    Article  ADS  Google Scholar 

  44. J. Sakaguchi et al., J. Lightwave Technol. 31, 554 (2013)

    Article  ADS  Google Scholar 

  45. R.G.H. van Uden et al., Nat. Photonics 8, 865 (2014)

    Article  ADS  Google Scholar 

  46. T. Mizuno et al., Optical Fiber Communication Conference: Postdeadline Papers (Optical Society of America, 2014), paper Th5B.2

  47. M.J. Collins et al., Nat. Commun. 4, 2582 (2013)

    Article  ADS  Google Scholar 

  48. G. Heinze, C. Hubrich, T. Halfmann, Phys. Rev. Lett. 111, 033601 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Alberta Innovates Technology Futures (AITF), the National Engineering and Research Council of Canada (NSERC), the DARPA Quiness program subaward contract number SP0020412-PROJ0005188, under prime contract number W31P4Q-13-1-0004. W.T. is a senior fellow of the Canadian Institute for Advanced Research. We thank Chris Fuchs for useful discussions on modeling, Matt Shaw for useful discussions on detectors and Jonas Schmöle for graphical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Krovi.

Additional information

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krovi, H., Guha, S., Dutton, Z. et al. Practical quantum repeaters with parametric down-conversion sources. Appl. Phys. B 122, 52 (2016). https://doi.org/10.1007/s00340-015-6297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6297-4

Keywords

Navigation