Log in

Penetration depth in dirty superconducting NbTiN thin films grown at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a study on the superconducting properties of 500 nm thick NbTiN films grown by reactive co-sputtering on silicon substrates at room temperature. The samples exhibit a chemical composition with Nb (50 at.%) and Ti (50 at.%), revealing a polycrystalline structure characterized by columnar growth and an average lateral grain size of approximately 40 nm. The superconducting critical temperature (Tc) was measured at 13.8 K, and the upper critical field extrapolated to zero temperature reached 22 T, resulting in a coherence length (ξ) of 3.8 nm. The penetration depth (λ) was determined through local magnetic force microscopy measurements conducted at temperatures of 4.25 and 6 K. The obtained values were 400 (15) nm at 4.25 K and 430 (15) nm at 6 K. Extrapolating these measurements to zero temperature, we obtained an estimated value of 380 nm. A comparison was made with samples that underwent thermal annealing at 700 °C, resulting in a reduction of disorder at the nanoscale and an increase in Tc to 14.2 K. Despite this enhancement, the coherence length ξ (0) remained at approximately 3.8 nm, with no appreciable changes in the λ values. Our findings contribute to understanding fundamental superconducting parameters in nitride thin films, with potential applications ranging from resonant accelerator cavities to Josephson junctions and radiation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.S. Ningthoujam, N.S. Gajbhiye, Synthesis, electron transport properties of transition metal nitrides and applications. Progr. Mater. Sci. 70, 50–154 (2015). https://doi.org/10.1016/j.pmatsci.2014.11.004

    Article  Google Scholar 

  2. Z. Wang, H. Terai, A. Kawakami, Y. Uzawa, Interface and tunneling barrier heights of NbN/AlN/NbN tunnel junctions. Appl. Phys. Lett. 75, 701–703 (1999). https://doi.org/10.1063/1.124487

    Article  ADS  Google Scholar 

  3. S. Kim, H. Terai, T. Yamashita, W. Qiu, T. Fuse, F. Yoshihara, S. Ashhab, K. Inomata, K. Semba, Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Commun. Mater. 2, 98 (2021). https://doi.org/10.1038/s43246-021-00204-4

    Article  Google Scholar 

  4. M. Shcherbatenko, I. Tretyakov, Yu. Lobanov, S.N. Maslennikov, N. Kaurova, M. Finkel, B. Voronov, G. Goltsman, T.M. Klapwijk, Nonequilibrium interpretation of dc properties of NbN superconducting hot electron bolometer. Appl. Phys. Lett. 109, 132602 (2016). https://doi.org/10.1063/1.4963691

    Article  ADS  Google Scholar 

  5. G. Ulbricht, M. De Lucia, E. Baldwin, Applications for microwave kinetic induction detectors in advanced instrumentation. Appl. Sci. 11, 2671 (2021). https://doi.org/10.3390/app11062671

    Article  Google Scholar 

  6. C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012). https://doi.org/10.1088/0953-2048/25/6/063001

    Article  ADS  Google Scholar 

  7. J. Zichi, J. Chang, S. Steinhauer, J.W.N. Los, K. von Fieandt, G. Visser, N. Kalhor, T. Lettner, A.W. Elshaari, I.E. Zadehand, V. Zwiller, Optimizing the stoichiometry of ultrathin NbTiN films for high-performance superconducting nanowire single-photon detectors. Opt. Express 27, 26579–26587 (2019). https://doi.org/10.1364/OE.27.026579

    Article  ADS  Google Scholar 

  8. A. Gurevich, Enhancement of rf breakdown field of superconductors by multilayer coating. Appl. Phys. Lett. 88, 012511 (2006). https://doi.org/10.1063/1.2162264

    Article  ADS  Google Scholar 

  9. S. Leith, M. Vogel, J. Fan, E. Seiler, R. Ries, X. Jian, Superconducting NbN thin films for use in superconducting radio frequency cavities. Supercond. Sci. Technol. 34, 025006 (2021). https://doi.org/10.1088/1361-6668/abc73b

    Article  ADS  Google Scholar 

  10. G. Bimonte, Casimir effect between superconductors. Phys. Rev. A 99, 052507 (2019). https://doi.org/10.1103/PhysRevA.99.052507

    Article  ADS  Google Scholar 

  11. K. Makise, H. Terai, M. Takeda, Y. Uzawa, Z. Wang, Characterization of NbTiN thin films deposited on various substrates. IEEE Trans. Appl. Supercond. 21, 139 (2011). https://doi.org/10.1103/10.1109/TASC.2010.2088350

    Article  ADS  Google Scholar 

  12. P. Luo, Y. Zhao, Niobium nitride preparation for superconducting single-photon detectors. Molecules 28, 6200 (2023). https://doi.org/10.3390/molecules28176200

    Article  Google Scholar 

  13. F. Mercier, S. Coindeau, S. Lay, A. Crisci, M. Benz, T. Encinas, R. Boichot, A. Mantoux, C. Jimenez, F. Weiss, E. Blanquet, Niobium nitride thin films deposited by high temperature chemical vapor deposition. Surf. Coat. Tech. 260, 126–132 (2014). https://doi.org/10.1016/j.surfcoat.2014.08.084

    Article  Google Scholar 

  14. D. Hazra, N. Tsavdaris, S. Jebari, A. Grimm, F. Blanchet, F. Mercier, E. Blanquet, C. Chapelier, M. Hofheinz, Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition. Supercond. Sci. Technol. 29, 105011 (2016). https://doi.org/10.1088/0953-2048/29/10/105011

    Article  ADS  Google Scholar 

  15. G. Zou, M. Jain, H. Zhou, H. Luo, S.A. Baily, L. Civale, E. Bauer, T.M. McCleskey, A.K. Burrell, Q. Jia, Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique. Chem. Commun. 45, 6022–6024 (2008). https://doi.org/10.1039/B815066D

    Article  Google Scholar 

  16. R.E. Treece, J.S. Horwitz, J.H. Claassen, D.B. Chrisey Crossmark, Pulsed laser deposition of high-quality NbN thin films. Appl. Phys. Lett. 65, 2860–2862 (1994). https://doi.org/10.1063/1.112516

    Article  ADS  Google Scholar 

  17. P. Pratap, L. Nanda, K. Senapati, R.P. Aloysius, V. Achanta, Optimization of the superconducting properties of NbTiN thin films by variation of the N2 partial pressure during sputter deposition. Supercond. Sci. Technol. 36, 085017 (2023). https://doi.org/10.1088/1361-6668/ace3fa

    Article  ADS  Google Scholar 

  18. R. Baskaran, A.V. Thanikai Arasu, E.P. Amaladass, M.P. Janawadka, High upper critical field in disordered niobium nitride superconductor. J. Appl. Phys. 116, 163908 (2014). https://doi.org/10.1063/1.4900436

    Article  ADS  Google Scholar 

  19. X. Wei, P. Roy, Z. Yang, D. Zhang, Z. Hed, P. Lue, O. Licat, H. Wang, B. Mazumderb, N. Patibandlac, Y. Caoc, H. Zeng, M. Zhuc, Q. Jia, Ultrathin epitaxial nbn superconducting films with high upper critical field grown at low temperature. Mater. Res. Lett. 9, 336 (2021). https://doi.org/10.1080/21663831.2021.1919934

    Article  Google Scholar 

  20. S.J. Rezinovsky Nieto, J.A. Hofer, M. Sirena, N. Haberkorn, Flexible NbTiN thin films for superconducting electronics. Phys. C 607, 1354241 (2023). https://doi.org/10.1016/j.physc.2023.1354241

    Article  ADS  Google Scholar 

  21. S. Kubo, M. Asahi, M. Hikita, M. Igarashi, Magnetic penetration depths in superconducting nbn films prepared by reactive dc magnetron sputtering. Appl. Phys. Lett. 44, 258 (1984). https://doi.org/10.1063/1.94690

    Article  ADS  Google Scholar 

  22. A. Kamlapure, M. Mondal, M. Chand, A. Mishra, J. Jesudasan, V. Bagwe, L. Benfatto, V. Tripathi, P. Raychaudhuri, Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films. Appl. Phys. Lett. 96, 072509 (2010). https://doi.org/10.1063/1.3314308

    Article  ADS  Google Scholar 

  23. D.E. Dates, A.C. Anderson, C.C. Chin, J.S. Derov, G. Dresselhaus, M.S. Dresselhaus, Surface-impedance measurements of superconducting NbN films. Phys. Rev. B 43, 7655 (1991). https://doi.org/10.1103/PhysRevB.43.7655

    Article  ADS  Google Scholar 

  24. L. Yu, R.K. Singh, H. Liu, S.Y. Wu, R. Hu, D. Durand, J. Bulman, J.M. Rowell, N. Newman, Fabrication of niobium titanium nitride thin films with high superconducting transition temperatures and short penetration lengths. IEEE Trans. Appl. Supercond. 15, 44 (2005). https://doi.org/10.1109/TASC.2005.844126

    Article  ADS  Google Scholar 

  25. M. Tinkham, Introduction to Superconductivity, 2nd edn. (Dover Publications, Mineola, 2004)

    Google Scholar 

  26. M. Transtrum, G. Catelani, J.P. Sethna, Superheating field of superconductors within Ginzburg–Landau theory. Phys. Rev. B 83, 094505 (2011). https://doi.org/10.1103/PhysRevB.83.094505

    Article  ADS  Google Scholar 

  27. M. Muller, T. Luschmann, A. Faltermeier, S. Weichselbaumer, L. Koch, G.B.P. Huber, H.W. Schumacher, N. Ubbelohde, D. Reifert, T. Scheller, F. Deppe, A. Marx, S. Filipp, M. Althammer, R. Gross, H. Huebl, Magnetic field robust high quality factor nbtin superconducting microwave resonators. Mater. Quantum Technol. 2, 015002 (2022). https://doi.org/10.1103/10.1088/2633-4356/ac50f8

    Article  ADS  Google Scholar 

  28. J. Kim, L. Civale, E. Nazaretski, N. Haberkorn, F. Ronning, A.S. Sefat, T. Tajima, B.H. Moeckly, J.D. Thompson, R. Movshovich, Direct measurement of the magnetic penetration depth by magnetic force microscopy. Supercond. Sci. Technol. 25, 112001 (2012). https://doi.org/10.1088/0953-2048/25/11/112001

    Article  ADS  Google Scholar 

  29. N. Haberkorn, S. Bengio, H. Troiani, S. Suárez, P.D. Pérez, M. Sirena, J. Guimpel, Synthesis of nanocrystalline δ-mon by thermal annealing of amorphous thin films grown on (100) Si by reactive sputtering at room temperature. Thin Solid Films 660, 242–246 (2018). https://doi.org/10.1016/j.tsf.2018.06.010

    Article  ADS  Google Scholar 

  30. G. Kim, J. Yun, Y. Lee, J. Kim, Construction of a vector- field cryogenic magnetic force microscope. Rev. Sci. Instrum. 93, 063701 (2022). https://doi.org/10.1063/5.0092264

    Article  ADS  Google Scholar 

  31. R. Baskaran, A.V. Thanikai Arasu, E.P. Amaladass, L.S. Vaidhyanathan, D.K. Baisnab, Increased upper critical field for nanocrystalline MoN thin films deposited on AlN buffered substrates at ambient temperature. J. Phys. D 49, 205304 (2016). https://doi.org/10.1088/0022-3727/49/20/205304

    Article  ADS  Google Scholar 

  32. T. Polakovic, S. Lendinez, J.E. Pearson, A. Hoffmann, V. Yefremenko, C.L. Chang, W. Armstrong, K. Hafidi, G. Karapetrov, V. Novosad, Room temperature deposition of superconducting niobium nitride films by ion beam assisted sputtering. APL Mater. 6, 076107 (2018). https://doi.org/10.1063/1.5031904

    Article  ADS  Google Scholar 

  33. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966). https://doi.org/10.1103/PhysRev.147.295

    Article  ADS  Google Scholar 

  34. K. Maki, Effect of Pauli paramagnetism on magnetic properties of high-field superconductors. Phys. Rev. 148, 362 (1966). https://doi.org/10.1103/PhysRev.148.362

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge B. Pentke and C. Bertoli for technical assistance. This work was partially supported by ANCYPT 2022-09-00432, U. N. de Cuyo 06/C013T1, CONICET (PIP 11220210100263CO), BrainLink program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (2022H1D3A3A01077468) and Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00222408). YL, JY and JK were supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant No. NRF-2019R1A2C2090356) and the Technology Development Program (Grant No. S3198743) funded by the Ministry of SMEs and Startups (MSS, Korea).

Author information

Authors and Affiliations

Authors

Contributions

NH grew the samples and performed XRD. YL and NH performed electrical transport measurements. YL, JY, CL and JK performed AFM and MFM measurements and analysis. All the authors contributed equally to the discussion and the writing of the manuscript.

Corresponding authors

Correspondence to Jeehoon Kim or N. Haberkorn.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Yun, J., Lee, C. et al. Penetration depth in dirty superconducting NbTiN thin films grown at room temperature. Appl. Phys. A 130, 504 (2024). https://doi.org/10.1007/s00339-024-07650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07650-0

Keywords

Navigation