Log in

Heating efficiency of PEGylated Mn–Zn ferrite nanoparticles for magnetic fluid hyperthermia

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a series of PEGylated manganese-zinc ferrite mixed (PEG-Mn1-xZnxFe2O4) nanoparticles with varying concentrations of zinc ions (x = 0.0, 0.25, 0.4, 0.5, 0.75, 1.0) were synthesized using a solvothermal approach to investigate their physicochemical and magnetic hyperthermia properties through a range of analytical techniques, including TEM, XRF, XRD, FTIR, VSM, and magnetic hyperthermia. The PEG-Mn1-xZnxFe2O4 nanoparticles exhibited a nearly spherical shape and diameters less than 30 nm. The particle size decreased from 27 to 11.6 nm with an increasing amount of zinc (x = 0.0–0.5). The saturation magnetization (MS) value decreased with the rising Zn content, ranging from 77.8 to 30.7 emu/g. The addition of zinc led to a reduction in the specific absorption rate (SAR) of the material. This decrease in the SAR parameter was associated with a decline in the intrinsic loss power (ILP) value, varying from 0.264 nH m2/kg for MnFe2O4 to 0.037 nH m2/kg for ZnFe2O4. Consequently, these PEG-Mn1-xZnxFe2O4 nanoparticles exhibit potential as candidates for magnetic fluid hyperthermia applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012). https://doi.org/10.1021/cr300068p

    Article  PubMed  Google Scholar 

  2. A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7(1), 144 (2012). https://doi.org/10.1186/1556-276x-7-144

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. S. Laurent, J.-L. Bridot, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles for biomedical applications. Future Med. Chem. 2, 427–449 (2010). https://doi.org/10.4155/fmc.09.164

    Article  PubMed  Google Scholar 

  4. M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutiérrez, M.P. Morales, I.B. Böhm, W.J. Parak, Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306 (2012). https://doi.org/10.1039/c2cs15337h

    Article  PubMed  Google Scholar 

  5. M.J. Ansari et al., Synthesis and stability of magnetic nanoparticles. Bionanoscience. 12, 627–638 (2022). https://doi.org/10.1007/s12668-022-00947-5

    Article  Google Scholar 

  6. A. Ali, T. Shah, R. Ullah et al., Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Front. Chem. 9, 629054 (2021). https://doi.org/10.3389/fchem.2021.629054

    Article  PubMed  PubMed Central  Google Scholar 

  7. M.I. Anik, M.K. Hossain, I. Hossain et al., Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Select. 2, 1146–1186 (2021). https://doi.org/10.1002/nano.202000162

    Article  Google Scholar 

  8. A. Singh, S.K. Sahoo, Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov. Today 19, 474–481 (2014). https://doi.org/10.1016/j.drudis.2013.10.005

    Article  PubMed  Google Scholar 

  9. X.L. Liu, H.M. Fan, Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications. Curr. Opin. Chem. Eng. 4, 38–46 (2014). https://doi.org/10.1016/j.coche.2013.12.010

    Article  Google Scholar 

  10. Y. Cohen, S.Y. Shoushan, Magnetic nanoparticles-based diagnostics and theranostics. Curr. Opin. Biotech. 4, 672–681 (2013). https://doi.org/10.1016/j.copbio.2013.01.006

    Article  Google Scholar 

  11. P. Das, M. Colombo, D. Prosperi, Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf. B 171, 42–55 (2019). https://doi.org/10.1016/j.colsurfb.2018.10.051

    Article  Google Scholar 

  12. Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 123, 174–196 (2017). https://doi.org/10.1016/j.matdes.2017.03.036

    Article  Google Scholar 

  13. S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166, 8–23 (2011). https://doi.org/10.1016/j.cis.2011.04.003

    Article  PubMed  Google Scholar 

  14. C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 9, 789–808 (2011). https://doi.org/10.1016/j.addr.2011.03.008

    Article  Google Scholar 

  15. F. Vurro, M. Gerosa, A. Busato et al., Doped ferrite nanoparticles exhibiting self-regulating temperature as magnetic fluid hyperthermia antitumoral agents, with diagnostic capability in magnetic resonance imaging and Magnetic Particle Imaging. Cancers 14(20), 5150 (2022). https://doi.org/10.3390/cancers14205150

    Article  PubMed  PubMed Central  Google Scholar 

  16. J. Kurian, B.B. Lahiri, M.J. Mathew et al., High magnetic fluid hyperthermia efficiency in copper ferrite nanoparticles prepared by solvothermal and hydrothermal methods. J. Magn. Magn. Mater. 538, 168233 (2021). https://doi.org/10.1016/j.jmmm.2021.168233

    Article  Google Scholar 

  17. A. Bhardwaj, K. Parekh, N. Jain, In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Sci. Rep. 10(1), 15249 (2020). https://doi.org/10.1038/s41598-020-71552-3

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. D. Ortega, Q.A. Pankhurst, Magnetic hyperthermia, in Nanoscience: volume 1: nanostructures through chemistry. ed. by P. O’Brien (Royal Society of Chemistry, Cambridge, 2013), pp.60–88. https://doi.org/10.1039/9781849734844-00060

    Chapter  Google Scholar 

  19. L. Arias, J. Pessan, A. Vieira, T. Lima, A. Delbem, D. Monteiro, Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 7(2), 46 (2018). https://doi.org/10.3390/antibiotics7020046

    Article  PubMed  PubMed Central  Google Scholar 

  20. E.A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015). https://doi.org/10.1063/1.4935688

    Article  ADS  Google Scholar 

  21. A.E. Deatsch, B.A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014). https://doi.org/10.1016/j.jmmm.2013.11.006

    Article  ADS  Google Scholar 

  22. H. Etemadi, G.P. Plieger, Magnetic fluid hyperthermia based on magnetic nanoparticles: physical characteristics, historical perspective, clinical trials, technological challenges, and recent advances. Adv. Ther. 3(11), 2000061 (2020). https://doi.org/10.1002/adtp.202000061

    Article  Google Scholar 

  23. S. Healy, A.F. Bakuzis, P.W. Goodwill et al., Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14(3), e1779 (2022). https://doi.org/10.1002/wnan.1779

    Article  PubMed  PubMed Central  Google Scholar 

  24. J.A. Fuentes-García, A. Carvalho-Alavarse et al., Simple sonochemical method to optimize the heating efficiency of magnetic nanoparticles for magnetic fluid hyperthermia. ACS Omega 5, 26357–26364 (2020). https://doi.org/10.1021/acsomega.0c02212

    Article  PubMed  PubMed Central  Google Scholar 

  25. D.D. Andhare, S.R. Patade, M.V. Khedkar et al., Intensive analysis of uncoated and surface modified Co–Zn nanoferrite as a heat generator in magnetic fluid hyperthermia applications. Appl. Phys. A 128, 502 (2022). https://doi.org/10.1007/s00339-022-05648-0

    Article  ADS  Google Scholar 

  26. I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012). https://doi.org/10.1016/j.jmmm.2011.10.017

    Article  ADS  Google Scholar 

  27. W. Zhang, X. Yu, H. Li, D. Dong, X. Zuo, C. Wu, Magnetic nanoparticles with low Curie temperature and high heating efficiency for self-regulating temperature hyperthermia. J. Magn. Magn. Mater. 489, 165382 (2019). https://doi.org/10.1016/j.jmmm.2019.165382

    Article  Google Scholar 

  28. K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule, B.B. Mamba, Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314

    Article  Google Scholar 

  29. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MNZN ferrites: synthesis, characterization and applications. Ceram. Int. 46, 15740–15763 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287

    Article  PubMed  PubMed Central  Google Scholar 

  30. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomater. 26, 3995–4021 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  31. R.D. Piazza et al., PEGlatyon-SPION surface functionalization with folic acid for magnetic hyperthermia applications. Mater. Res. Express. 7, 015078 (2020). https://doi.org/10.1088/2053-1591/ab6700

    Article  ADS  Google Scholar 

  32. S. Hatamie, P.-J. Shih, M. Soufi-Zomorod et al., Hyperthermia response of pegylated magnetic graphene nanocomposites for heating applications and accelerate antibacterial activity using magnetic fluid hyperthermia. Appl. Phys. A 126, 276 (2020). https://doi.org/10.1007/s00339-020-3454-3

    Article  ADS  Google Scholar 

  33. J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug. Deliv. 99, 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012

    Article  Google Scholar 

  34. Z. Shaterabadi, G. Nabiyouni, M. Soleymani, Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Prog. Biophys. Mol. Biol. 133, 9–19 (2018). https://doi.org/10.1016/j.pbiomolbio.2017.10.001

    Article  PubMed  Google Scholar 

  35. A. Apostolov, I. Apostolova, J. Wesselinowa, Specific absorption rate in Zn-doted ferrites for self-controlled magnetic hyperthermia. Eur. Phys. J. B. (2019). https://doi.org/10.1140/epjb/e2019-90567-2

    Article  Google Scholar 

  36. A. Makridis, K. Topouridou, M. Tziomaki, D. Sakellari, K. Simeonidis, M. Angelakeris, O. Kalogirou, In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. J. Mater. Chem. B. 2, 8390–8398 (2014). https://doi.org/10.1039/c4tb01017e

    Article  PubMed  Google Scholar 

  37. J. **e et al., High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 35, 9126–9136 (2014)

    Article  PubMed  Google Scholar 

  38. Y. Qu et al., Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of MnxZn1-XFe2O4 nanoparticles for induced tumor cell apoptosis. ACS Appl. Mater. Interfaces 6, 16867–16879 (2014). https://doi.org/10.1021/am5042934

    Article  PubMed  Google Scholar 

  39. X.L. Liu et al., Synthesis of ferromagnetic Fe0.6Mn0.4O nanoflowers as a new class of magnetic theranostic platform for in vivo T1–T2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv. Healthc. Mater. 5, 2092–2104 (2016). https://doi.org/10.1002/adhm.201600357

    Article  ADS  PubMed  Google Scholar 

  40. H. Wu, L. Song, L. Chen, Huang et al., Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. Nanoscale 9(42), 16175–16182 (2017). https://doi.org/10.1039/c7nr02858j

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, № FENW-2023-0019).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, funding acquisition, resources, supervision: AVS. Investigation, visualization, writing—original draft, writing – review & editing: MKA, MAB, VOD and OEP. Validation: MKA, OEP, and AVS. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to M. K. Al-Omoush or O. E. Polozhentsev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Omoush, M.K., Bryleva, M.A., Dmitriev, V.O. et al. Heating efficiency of PEGylated Mn–Zn ferrite nanoparticles for magnetic fluid hyperthermia. Appl. Phys. A 130, 160 (2024). https://doi.org/10.1007/s00339-024-07337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07337-6

Keywords

Navigation