Log in

Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, we demonstrate the photoluminescence properties of Dy3+-activated YNbO4, LuNbO4, and mixed YxLu1−xNbO4:Dy3+ (x = 0.25, 0.5, 0.75) phosphors. For this purpose, five samples with a fixed Dy3+ concentration (2 mol%) were prepared by the solid-state reaction method. X-ray diffraction measurements showed that all phosphors crystallize in a monoclinic fergusonite-beta-(Y) structure with a C2/c space group. Scanning electron microscopy clearly shows that samples are composed of dense, well-developed micron-sized, cube-shaped grains with rounded edges. The photoluminescent emission spectra feature Dy3+ peaks at standard positions corresponding to transitions from the 4F9/2 excited emitting level to the 6HJ (J = 15/2; 13/2; 11/2 and 9/2) lower levels with two dominant emission bands placed in the blue (~ 479 nm, B) and yellow (~ 576 nm, Y) spectral region. It is observed that with Lu increase in the host lattice Y/B ratio decreases toward the desired ratio of unity to obtain white light. To evaluate the suitability of these phosphors for use in solid-state lighting, their photoluminescence emission was analyzed in detail by calculating CIE coordinates, correlated color temperature (CCT) and Delta u,v (DUV). It is shown that CIE chromaticity coordinates of all Dy3+-activated YxLu1−xNbO4 samples (x = 0, 0.25, 0.5, 0.75, and 1) fall into the white portion of the diagram and that with the increase of Lu in the host lattice color becomes whiter. CCT values for all samples are in the cooler 4000–4500 K range with positive DUVs indicating that color points are placed above the black body curve. The average lifetime of 4F9/2 level is calculated to be ~ 0.2 ms for all Dy3+-activated YxLu1−xNbO4 samples, indicating that there is no influence of the Y-to-Lu ratio in the host niobate material on the luminescence kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. E. Nakazawa, Phosphor Handbook (CRC Press, New York, 1999)

    Google Scholar 

  2. G. Blasse, A. Bril, J. Electrochem. Soc. 115, 1067 (1968). https://doi.org/10.1149/1.2410880

    Article  ADS  CAS  Google Scholar 

  3. M. Baran, K.N. Belikov, A. Kissabekova, A. Krasnikov, A. Lushchik, A. Suchocki, V. Tsiumra, L. Vasylechko, S. Zazubovich, Ya. Zhydachevskyy, Opt. Mat. 123, 111948 (2022). https://doi.org/10.1016/j.optmat.2021.111948

    Article  CAS  Google Scholar 

  4. Z. Wang, R. Liu, Y. Yin, C. Dou, C. Hu, Y. Wang, W. Teng, Q. Niu, J. Zhu, F. Zheng, Y. Che, J. Li, S. Sun, B. Teng, D. Zhong, J. Phys. Chem. Solids 165, 110658 (2022). https://doi.org/10.1016/j.jpcs.2022.110658

    Article  CAS  Google Scholar 

  5. T. Wang, Y. Hu, L. Chen, X. Wang, M. He, J. Lumin. 181, 189 (2017). https://doi.org/10.1016/j.jlumin.2016.09.020

    Article  CAS  Google Scholar 

  6. X. Wang, X. Li, H. Yu, S. Xu, J. Sun, L. Cheng, X. Zhang, J. Zhang, Y. Cao, B. Chen, J. Rare Earths 40, 381 (2022). https://doi.org/10.1016/j.jre.2020.11.001

    Article  CAS  Google Scholar 

  7. S. Yuan, S. Zhao, L. Lou, D. Zhu, Z. Mu, F. Wu, Powder Technol. (2022). https://doi.org/10.1016/j.powtec.2021.09.053

    Article  Google Scholar 

  8. C. Niu, L. Li, X. Li, Y. Lv, X. Lang, Opt. Mat. 75, 68 (2018). https://doi.org/10.1016/j.optmat.2017.07.001

    Article  CAS  Google Scholar 

  9. F.F. do Carmo, J.P.C. do Nascimento, M.X. Façanha, A.S.B. Sombra, Mat. Lett. 254, 65 (2019). https://doi.org/10.1016/j.matlet.2019.07.020

    Article  CAS  Google Scholar 

  10. L.R. Đačanin, S.R. Lukić-Petrović, D.M. Petrović, M.G. Nikolić, M.D. Dramićanin, J. Lumin.Lumin. 151, 82 (2014). https://doi.org/10.1016/j.jlumin.2014.02.008

    Article  ADS  CAS  Google Scholar 

  11. L.R. Đačanin, M.D. Dramićanin, S.R. Lukić-Petrović, D.M. Petrović, M.G. Nikolić, T.B. Ivetić, I.O. Gúth, Ceram. Int. 40, 8281 (2014). https://doi.org/10.1016/j.ceramint.2014.01.028

    Article  CAS  Google Scholar 

  12. L. Ðačanin Far, S.R. Lukić-Petrović, V. Ðorđević, K. Vuković, E. Glais, B. Viana, M.D. Dramićanin, Sens. Actuator A Phys. 270, 89 (2018). https://doi.org/10.1016/j.sna.2017.12.044

    Article  CAS  Google Scholar 

  13. M. Sekulić, T. Dramićanin, A. Ćirić, L. Ðačanin Far, M.D. Dramićanin, V. Ðorđević, Cryst. 12, 427 (2022). https://doi.org/10.3390/cryst12030427

    Article  CAS  Google Scholar 

  14. B. Zhao, Y. Chen, Y. Xue, Q. Mao, G. Bai, M. Liu, J. Zhong, Mater. Des. 227, 111802 (2023). https://doi.org/10.1016/j.matdes.2023.111802

    Article  CAS  Google Scholar 

  15. Q. Su, Z. Pei, L. Chi, H. Zhang, Z. Zhang, F. Zou, J. Alloys Compd. 192, 25 (1993). https://doi.org/10.1016/0925-8388(93)90174-L

    Article  CAS  Google Scholar 

  16. A.K. Vishwakarma, K. Jha, M. Jayasimhadri, A.S. Rao, K. Jang, B. Siviah, J. Alloys Compd. 622, 97 (2015). https://doi.org/10.1016/j.jallcom.2014.10.016

    Article  CAS  Google Scholar 

  17. L. Mishra, A. Sharma, A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B.V. Ratnam, K. Jang, A.S. Rao, R.K. Sinha, J. Lumin. 169, 121 (2016). https://doi.org/10.1016/j.jlumin.2015.08.063

    Article  CAS  Google Scholar 

  18. R.D. Bayliss, S.S. Pramana, T. An, F. Wei, C.L. Kloc, A.J.P. White, S.J. Skinner, T.J. White, T. Baikie, J. Solid State Chem. 204, 291 (2013). https://doi.org/10.1016/j.jssc.2013.06.022

    Article  ADS  CAS  Google Scholar 

  19. S.W. Arulnesan, P. Kayser, J.A. Kimpton, B.J. Kennedy, J. Solid State Chem. 277, 229 (2019). https://doi.org/10.1016/j.jssc.2019.06.014

    Article  ADS  CAS  Google Scholar 

  20. C. Keller, Z. Anorg, Allg. Chem. 318, 89 (1962). https://doi.org/10.1002/zaac.19623180108

    Article  CAS  Google Scholar 

  21. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  22. H. Weitzel, H. Schroecke, Z. Kristallogr. 152, 69 (1980). https://doi.org/10.1524/zkri.1980.152.14.69

    Article  CAS  Google Scholar 

  23. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience Publishers, New York, London, 1968)

    Google Scholar 

  24. A. Báez-Rodríguez, D. Albarrán-Arreguín, A.C. García-Velasco, O. Álvarez-Fregoso, M. García-Hipólito, M.A. Álvarez-Pérez, L. Zamora-Peredo, C. Falcony, J. Mater. Sci. Mater. Electron. 29, 15502 (2018). https://doi.org/10.1007/s10854-018-9105-1

    Article  CAS  Google Scholar 

  25. A. Ćirić, S. Stojadinović, J. Alloys Compd. 832, 154907 (2020). https://doi.org/10.1016/j.jallcom.2020.154907

    Article  CAS  Google Scholar 

  26. Z. Yang, H. Dong, X. Liang, C. Hou, L. Liu, F. Lu, Dalton Trans. 43, 11474 (2014). https://doi.org/10.1039/C4DT00794H

    Article  PubMed  CAS  Google Scholar 

  27. Q. Chen, N. Dai, Z. Liu, Y. Chu, B. Ye, H. Li, J. Peng, Z. Jiang, J. Li, F. Wang, L. Yang, Appl. Phys. A 115, 1159 (2014). https://doi.org/10.1007/s00339-013-7995-6

    Article  ADS  CAS  Google Scholar 

  28. X. Wang, X. Li, S. Xu, L. Cheng, J. Sun, J. Zhang, X. Zhang, B. Chen, J. Asian Ceram. Soc. 8(4), 1066 (2020). https://doi.org/10.1080/21870764.2020.1815347

    Article  Google Scholar 

  29. C. Liu, W. Zhou, R. Shi, L. Lin, R. Zhou, J. Chen, Z. Li, H. Liang, J. Mater. Chem. C 5(35), 9012 (2017). https://doi.org/10.1039/c7tc03260a

    Article  CAS  Google Scholar 

  30. M.D. Dramićanin, Luminescence Thermometry, Methods, Materials, and Applications (Elsevier, 2018), pp.40–41

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding of the Ministry of Science, Technological Development, and Innovation of the Republic of Serbia under contract 451-03-47/2023-01/200017.

Funding

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, 451-03-47/2023-01/200017.

Author information

Authors and Affiliations

Authors

Contributions

LDF: investigation (lead), conceptualization (equal), writing/review & editing (equal). TD: investigation (equal). MM: investigation (equal). ZR: formal analysis (equal). JP: formal analysis (equal). VD: investigation (equal). ŽA: writing/original draft preparation (lead), visualization (lead). MDD: conceptualization (lead), writing/review & editing (equal).

Corresponding author

Correspondence to Ljubica Đačanin Far.

Ethics declarations

Conflict of interest

The authors have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Far, L.Đ., Dramićanin, T., Medić, M. et al. Emission color tunability of dysprosium-activated YNbO4–LuNbO4-mixed phosphors. Appl. Phys. A 130, 107 (2024). https://doi.org/10.1007/s00339-023-07271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07271-z

Keywords

Navigation