Log in

Reliable liquified petroleum gas sensing at room temperature by nanocrystalline SnO2 thin film deposited by Langmuir–Blodgett method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High sensitivity for liquified petroleum gas (LPG) was observed at room temperature (RT) using nanocrystalline SnO2 thin films prepared on quartz substrates by Langmuir–Blodgett (LB) technique. SnO2 thin films were characterized using X-ray diffraction, energy dispersive spectroscopy and other techniques. Chemiresistive gas sensors were prepared by depositing Au electrodes on SnO2 thin film. LPG gas sensing studies were carried out in static and under dynamic flow condition. The maximum gas response of ~ 100 to 110% was achieved for 20,000 ppm with response time of ~ 3.5 min while it was ~ 5% for 2000 ppm of LPG. Under dynamic condition, when LPG was exposed to sensor for ~ 1 min response observed was ~ 150%. Study also revealed that SnO2 thin films are more sensitive to thiol group present as mercaptan in LPG rather than on hydrocarbons with high selectivity. Sensing studies over a period of 1 year suggested reliable response without much change in the important sensing parameters suggesting cheaper and better sensors using nano-engineered films.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data will be available on request.

References

  1. A. Sivapummiyam, N. Wiromrat, M. Myint, J. Dutta, Sens Actuators B 157, 232 (2011). https://doi.org/10.1016/j.snb.2011.03.055

    Article  Google Scholar 

  2. OSHA Occupational Chemical Database. https://www.osha.gov/chemicaldata/484. Accessed: 16th Feb 2023.

  3. S. Patil, A. Patil, C.G. Dighavkar, K.S. Thakare, R.Y. Borase, S.J. Nandre, N.G. Deshpande, R.R. Ahire, Front. Mater. Sci. 9(1), 14 (2015). https://doi.org/10.1007/s11706-015-0279-7

    Article  Google Scholar 

  4. S. Das, V. Jayaraman, Prog. Mater Sci. 66, 112 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  Google Scholar 

  5. M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Sensors 12, 7207 (2012). https://doi.org/10.3390/s120607207

    Article  ADS  Google Scholar 

  6. R. Dixit, S. Gupta, P. Kumar, S. Sikarwar, B.C. Yadav, Int. J. Innov. Res. Sci. Eng. Technol. 6, 1944 (2017). https://doi.org/10.15680/IJIRSET.2017.0602094

    Article  Google Scholar 

  7. C.A. Betty, S. Choudhury, A.Y. Shah, Surf. Interfaces 36, 102560 (2023). https://doi.org/10.1016/j.surfin.2022.102560

    Article  Google Scholar 

  8. S. Choudhury, C.A. Betty, K.G. Girija, S.K. Kulshreshtha, Appl. Phys. Lett. 89, 071914 (2006). https://doi.org/10.1063/1.2336725

    Article  ADS  Google Scholar 

  9. C.A. Betty, S. Choudhury, K.G. Girija, Sens. Actuators B 193, 484 (2014). https://doi.org/10.1016/j.snb.2013.11.118

    Article  Google Scholar 

  10. C.A. Betty, S. Choudhury, Sens. Actuators B Chem. 237, 787 (2016). https://doi.org/10.1016/j.snb.2016.06.163

    Article  Google Scholar 

  11. C.J. Chang, S.T. Hung, C.K. Lin, C.Y. Chen, E.H. Kuo, Thin Solid Films 519, 1693 (2010). https://doi.org/10.1016/j.tsf.2010.08.153

    Article  ADS  Google Scholar 

  12. C.J. Chang, C.Y. Lin, J.K. Chen, M.H. Hsu, Ceram. Int. 40, 10867 (2014). https://doi.org/10.1016/j.ceramint.2014.03.080

    Article  Google Scholar 

  13. I.C. Lin, C.C. Chang, C.K. Lin, S.J. Shih, C.J. Chang, C.Y. Tsay, J.B. Shi, T.L. Horng, J.H. Chen, J.J. Wu, C.Y. Hung, C.Y. Chen, J. Electroceram. 41, 28 (2018). https://doi.org/10.1007/s10832-018-0148-8

    Article  Google Scholar 

  14. K.S. Jian, C.J. Chang, J.J. Wu, Y.C. Chang, C.Y. Tsay, J.H. Chen, T.L. Horng, G.J. Lee, L. Karuppasamy, S. Anandan, C.Y. Chen, Polymers 11, 184 (2019). https://doi.org/10.3390/polym11010184

    Article  Google Scholar 

  15. L. Wang, B. Hong, H.D. Chen, J.C. Xu, Y.B. Han, H.X. **, D.F. **, X.L. Peng, H.L. Ge, X.Q. Wang, J. Mater. Chem. C 8, 3855 (2020). https://doi.org/10.1039/C9TC06614D

    Article  Google Scholar 

  16. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007). https://doi.org/10.1016/j.mseb.2007.01.044

    Article  Google Scholar 

  17. D. Le, D.D. Vuong, N.D. Chien, J. Phys. Conf. Ser. 187(1), 012086 (2009). https://doi.org/10.1088/1742-6596/187/1/012086

    Article  Google Scholar 

  18. D. Patil, V. Patil, P. Patil, Sens. Actuators B 152, 299 (2011). https://doi.org/10.1016/j.snb.2010.12.025

    Article  Google Scholar 

  19. B.C. Yadav, S. Singh, A. Yadav, Appl. Surf. Sci. 257, 1960 (2011). https://doi.org/10.1016/j.apsusc.2010.09.035

    Article  ADS  Google Scholar 

  20. D. Vuong, K.Q. Trung, N.H. Hung, N.V. Hieu, N.D. Chien, J. Alloy. Compd. 599, 195 (2014). https://doi.org/10.1016/j.jallcom.2014.02.089

    Article  Google Scholar 

  21. B. Babita, D. Kishore Kumar, S.V. Manorama, Sens. Actuators B Chem. 119(2), 676 (2006). https://doi.org/10.1016/j.snb.2006.01.028

    Article  Google Scholar 

  22. M. Gürbüz, G. Günkaya, A. Dogan, Appl. Surf. Sci. 318, 334 (2014). https://doi.org/10.1016/j.apsusc.2014.09.185

    Article  ADS  Google Scholar 

  23. L.V. Thong, N.D. Hoa, D.T. Le, D.T. Viet, P.D. Tam, A.-T. Le, N.V. Hieu, Sens. Actuators B 146, 361 (2010). https://doi.org/10.1016/j.snb.2010.02.054

    Article  Google Scholar 

  24. S. Goutham, S. Bykkam, K. Sadasivuni, D. Kumar, M. Ahmadipour, Z.A. Ahmad, K.V. Rao, Microchim. Acta 69, 185 (2018). https://doi.org/10.1007/s00604-017-2537-0

    Article  Google Scholar 

  25. R.K. Mishra, S.B. Upadhyay, A. Kushwaha, T.-H. Kim, G. Murali, R. Verma, M. Srivastava, J. Singh, P.P. Sahay, S.H. Lee, Nanoscale 7, 11971 (2015). https://doi.org/10.1039/C5NR02837J

    Article  ADS  Google Scholar 

  26. D. Haridas, A. Chowdhuri, K. Sreenivas, V. Gupta, Int. J. Smart Sens. Intell. Syst. 2, 503 (2009). https://doi.org/10.21307/ijssis-2017-364

    Article  Google Scholar 

  27. A.D. Garje, S.N. Sadakale, Adv. Mater. Lett. 4, 58 (2013). https://doi.org/10.5185/amlett.2013.icnano.228

    Article  Google Scholar 

  28. R.K. Sonker, B.C. Yadav, Adv. Sci. Lett. 20, 1023 (2014). https://doi.org/10.1166/asl.2014.5476

    Article  Google Scholar 

  29. V. Kumar, S.K. Srivastava, K. Jain, Sens. Transducers J. 101(2), 60–72 (2009)

    Google Scholar 

  30. R.S. Niranjan, Y.K. Hwang, D.-K. Kim, S.H. Jhung, J.-S. Chang, I.S. Mulla, Mater. Chem. Phys. 92, 384 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.050

    Article  Google Scholar 

  31. M.H. Reddy, A.N. Chandorkar, Thin Solid Films 349, 260 (1999). https://doi.org/10.1016/S0040-6090(99)00194-7

    Article  Google Scholar 

  32. J.K. Srivastava, P. Pandey, V.N. Mishra, R. Dwivedi, Solid State Sci. 11, 1602 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.06.014

    Article  ADS  Google Scholar 

  33. M.V. Vaishampayan, R.G. Deshmukh, I.S. Mulla, Sens. Actuators B 131, 665 (2008). https://doi.org/10.1016/j.snb.2007.12.055

    Article  Google Scholar 

  34. D.S. Dhawale, T.P. Gujar, C.D. Lokhande, Anal. Chem. 89, 8531 (2017). https://doi.org/10.1021/acs.analchem.7b023

    Article  Google Scholar 

  35. R.K. Mishra, P.P. Sahay, Mater. Res. Bull. 47, 4112 (2012). https://doi.org/10.1016/j.materresbull.2012.08.051

    Article  Google Scholar 

  36. S. Chaisitsak, Sensors 11(7), 7127 (2011). https://doi.org/10.3390/s110707127

    Article  ADS  Google Scholar 

  37. S. Choudhury, C.A. Betty, K.G. Girija, Thin Solid Films 517(2), 923 (2008). https://doi.org/10.1016/j.tsf.2008.08.183

    Article  ADS  Google Scholar 

  38. S.-T. Hung, C.-J. Chang, C.-H. Hsu, B. Chu, C. Lo, C.-C. Hsu, S. Pearton, M. Holzworth, P. Whiting, N. Rudawski, K. Jones, A. Dabiran, P. Chow, F. Ren, Int. J. Hydrogen Energy 37, 13783 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.124

    Article  Google Scholar 

  39. Y. Wang, X. Jiang, Y. **a, J. Am. Chem. Soc. 125, 16176–16177 (2003). https://doi.org/10.1021/ja037743f

    Article  Google Scholar 

  40. M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar, S. Patil, J.-H. Yun, Sci. Rep. 8, 8079 (2018). https://doi.org/10.1038/s41598-018-26504-3

    Article  ADS  Google Scholar 

  41. C.A. Betty, S. Choudhury, K.G. Girija, Sens. Actuators B 173, 781 (2012). https://doi.org/10.1016/j.snb.2012.07.110

    Article  Google Scholar 

  42. The National Institute for Occupational Safety and Health (NIOSH). https://www.cdc.gov/niosh/npg/npgd0280.html. [Last Updated: 16th Feb 2023]

  43. D. Garcia, G. Picasso, P. Hidalgo, H.E.M. Peres, R.S. Kou, J.M. Gonçalves, Anal. Chem. Res. 12, 74 (2017). https://doi.org/10.1016/j.ancr.2016.12.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by Dr. AS and Dr. SC. The first draft of the manuscript was written by Dr. AS and corrected by Dr. SC. Dr. CAB improvise and approved the final manuscript.

Corresponding authors

Correspondence to Sipra Choudhury or C. A. Betty.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.Y., Choudhury, S. & Betty, C.A. Reliable liquified petroleum gas sensing at room temperature by nanocrystalline SnO2 thin film deposited by Langmuir–Blodgett method. Appl. Phys. A 129, 478 (2023). https://doi.org/10.1007/s00339-023-06767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06767-y

Keywords

Navigation