Log in

Crystal structure, dielectric and magnetic properties of (1 − x)BaTiO3-(x)BaFe12O19 (x = 0.50, 0.60, 0.70) multiferroic composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multiferroic composites having composition (1 − x) BaTiO3–(x) BaFe12O19 (x = 0.50, 0.60, 0.70) were synthesized by the conventional solid-state reaction method. These composites constitute BaTiO3 as the ferroelectric phase and BaFe12O19 as the ferromagnetic phase. X-ray diffraction (XRD) was used to analyze the formation of crystal structure and phase purity. The formation of individual phases took place without evolving any chemical reaction in all the prepared samples, which evidences the good synthesis of composite ceramics. The presence of characteristic symmetry consisting of tetragonal (P4mm) and hexagonal (P63/mmc) was confirmed by the Rietveld refinement of XRD data. The effect of alternate concentration variation of the component ceramics has been analyzed over the dielectric, electric, and magnetic properties of the composites prepared. The dielectric constant (ε') and dielectric loss (tanδ) were recorded in the frequency and temperature domain and these have been observed to follow Maxwell Wagner’s dispersive behaviour. The dielectric relaxation and conduction mechanism were analyzed with the help of complex impedance spectroscopy (CIS). In Nyquist plots, two semi-circles, whose centres lie below the real axis, were observed for all the prepared samples. Magnetization (M) versus magnetic field (H) loops, recorded at room temperature shows, gradual increase with the increase in ferrite content. These hysteresis loops were fitted by the law of approach to saturation (LAS) and values of various magnetic parameters were evaluated. The gradual enhancement in the values of magnetic parameters may be attributed to an increase in the ferromagnetic phase component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. H. Hou, S. Qian, I. Takeuchi, Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022)

    ADS  Google Scholar 

  2. S. Nadupalli, F. Yan, E. Erdem, Low-temperature surface phase transitions in multiferroic BiFeO3 nanocrystals probed via electron paramagnetic resonance. J. Phys. Chem. C 44, 24596–24604 (2021)

    Google Scholar 

  3. B. Deka, Y.W. Lee, I.R. Yoo, D.W. Gwak, J. Cho, H.C. Song, J.J. Choi, B.D. Hahn, C.W. Ahn, K.H. Cho, Designing ferroelectric/ferromagnetic composite with giant self-biased magnetoelectric effect. Appl. Phys. Lett. 115, 192901 (2019)

    ADS  Google Scholar 

  4. Y.S. Teh, J. Li, K. Bhattacharya, Understanding the morphotropic phase boundary of perovskite solid solutions as a frustrated state. Phys. Rev. B 103, 144201 (2021)

    ADS  Google Scholar 

  5. U. Ozgur, Y. Alivov, H. Morkoc, Microwave Ferrites, Part 2: passive components and electrical tuning. J. Mater. Sci.: Mater. Electron. 20, 911–952 (2009)

    Google Scholar 

  6. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

    ADS  Google Scholar 

  7. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    ADS  Google Scholar 

  8. M.P. Singh, W. Prellier, C. Simon, B. Raveau, Magnetocapacitance effect in perovskite-superlattice based multiferroics. Appl. Phys. Lett. 87, 022505 (2005)

    ADS  Google Scholar 

  9. Y.T. Zhang, C.C. Wang, M. He, H.B. Lu, Interfacial contributions to magnetocapacitance in La0.05Tb0.95MnO3/La0.67Sr0.33MnO3/SrTiO3 heterojunctions. J. Phys. D: Appl. Phys. 42, 055309 (2009)

    ADS  Google Scholar 

  10. C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phy. Rev. B 50, 6082–6088 (1994)

    ADS  Google Scholar 

  11. D.R. Patil, S.A. Lokare, S.S. Chougule, B.K. Chougule, Dielectric and magnetic properties of xNiFe2O4+(1–x)Ba0.9Sr0/1TiO3 composites. Physica B 400, 77–82 (2007)

    ADS  Google Scholar 

  12. J. Qiu, L. Lana, H. Zhang, M. Gub, Microwave absorption properties of nanocomposite films of BaFe12O19 and TiO2 prepared by sol-gel method. Mater. Sci. Eng. B 133, 191–194 (2006)

    Google Scholar 

  13. A. Srinivas, M.M. Raja, D. Sivaprahasam, P. Saravanan, Enhanced ferroelectricity and magnetoelectricity in 0.75BaTiO3–0.25BaFe12O19 by spark plasma sintering. Process. Appl. Ceram. 7, 29–35 (2013)

    Google Scholar 

  14. A. Srinivasa, T. Karthik, R. Gopalan, V. Chandrasekaran, Improved magnetoelectricity by uniaxial magnetic field pressed and sintered composites in BaTiO3 (x)–BaFe12O19 (1–x) system (x = 0.8, 0.6). Mater. Sci. Eng. B 172, 289–293 (2010)

    Google Scholar 

  15. M. Fahmi, A.B. Zzolkepli, Z. Zainuddin, Structural, magnetic and electrical properties of barium titanate and magnesium ferrite composites. Sains Malays. 46(6), 967–973 (2017)

    Google Scholar 

  16. C.C. Yang, Y.J. Gung, C.C. Shih, W.C. Hung, K.H. Wub, Synthesis, infrared and microwave absorbing properties of (BaFe12O19+BaTiO3)/polyaniline composite. J. Magn. Magn. Mater. 323, 933–938 (2011)

    ADS  Google Scholar 

  17. S.W. Cheong, M. Mostovoy, Multiferroic: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007)

    ADS  Google Scholar 

  18. H. Pfeiffer, R.W. Chantrell, P. Görnert, W. Schüppel, E. Sinn, M. Rösler, Properties of barium hexaferrite powders for magnetic recording. J. Magn. Magn. Mater. 125, 373–376 (1993)

    ADS  Google Scholar 

  19. H. Kojima, Chapter 5 Fundamental properties of hexagonal ferrites with magnetoplumbite structure. Handb. Magn. Mater. 3, 305–391 (1982)

    Google Scholar 

  20. R. Pattanayak, R. Muduli, R.K. Panda, T. Dash, P. Sahu, S. Raut, S. Panigrahi, Investigating the effect of multiple grains–grain interfaces on electric and magnetic properties of [50 wt% BaFe12O19–50 wt% Na0.5Bi0.5TiO3] composite system. Physica B 485, 67–77 (2016)

    ADS  Google Scholar 

  21. K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, O. Parkash, D. Kumar, “Investigation of crystal structure, microstructure and low-temperature magnetic behaviour of Ce4+ and Zn2+ co-doped barium hexaferrite (BaFe12O19). RSC Adv. 8, 19600–19609 (2018)

    ADS  Google Scholar 

  22. H.M. Sung, C.J. Chen, W.S. Ko, H.C. Lin, Fine powder ferrite for multilayer chip inductors. IEEE Trans. Magn. 30, 4906–4908 (1984)

    ADS  Google Scholar 

  23. J. Rodriguez, Recent advances in magnetic structure determination by Neutron Powder Diffraction + FullProf. Phys. B. 192, 55–69 (1993)

    ADS  Google Scholar 

  24. Y. Cao, K. Zhu, J. Liu, J. Qiu, Fabrication of BaTiO3 nanoparticles and its formation mechanism using the high-temperature mixing method under hydrothermal conditions. Adv. Powder Technol. 25, 853–858 (2014)

    Google Scholar 

  25. J. Krishna-Murthy, C. Mitra, S. Ram, A. Venimadhav, Temperature-dependent magnetic and dielectric properties of M-type hexagonal BaFe12O19 nanoparticles. J. Alloys Compd. 545, 225–230 (2012)

    Google Scholar 

  26. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976)

    ADS  Google Scholar 

  27. V.V. Gudkov, M.N. Sarychev, S. Zherlitsyn, I.V. Zhevstovskikh, N.S. Averkiev, D.A. Vinnik, S.A. Gudkova, R. Niewa, M. Dressel, L.N. Alyabyeva, B.P. Gorshunov, I.B. Bersuker, Sub-lattice of Jahn-Teller centres in hexaferrite crystal. Sci. Reports 10, 7076 (2020)

    ADS  Google Scholar 

  28. D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, N.S. Perov, A.S. Semisalova, I.V. Krivtsov, L.I. Isaenko, G.G. Mikhailov, R. Niewa, Ti-Substituted BaFe12O19 Single Crystal Growth and Characterization. Cryst. Growth Des. 14, 5834–5839 (2014)

    Google Scholar 

  29. S. Dagar, A. Hooda, S. Khasa, M. Malik, Structural refinement, investigation of dielectric and magnetic properties of NBT doped BaFe12O19 novel composite system. J. Alloys Compd. 826, 154214 (2020)

    Google Scholar 

  30. M.J. Iqbal, M.N. Ashiq, Comparative studies of SrZrxMnxFe12-2xO19 nanoparticles synthesized by co-precipitation and sol-gel combustion methods. Scr. Mater. 56, 145–148 (2007)

    Google Scholar 

  31. I.A. Auwal, B. Ünal, A. Baykal, U. Kurtan, M.D. Amir, A. Yıldız, M. Sertkol, Electrical and Dielectric Properties of Y3+Substituted Barium Hexaferrites. J. Supercond. Nov. Magn. 30, 1813–1826 (2017)

    Google Scholar 

  32. K. Momma, F. Izumi, Vesta: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008)

    Google Scholar 

  33. A. J. Blake, W. Clegg, J. M. Cole, J. S.O. Evans, P. Main, S. Parsons, D. J. Watkin, Crystal structure analysis principles and practice second edition. IUCr (2009)

  34. O. Singh, A. Agarwal, S. Sanghi, J. Singh, Variation of crystal structure, magnetization, and dielectric properties of Nd and Ba co-doped BiFeO3 multiferroics. Int. J. Appl. Ceram. Technol. 16, 119–129 (2018)

    Google Scholar 

  35. K.W. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 818 (1993)

    Google Scholar 

  36. C.G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies. Phys. Rev. B 83, 121 (1951)

    ADS  Google Scholar 

  37. J.C. Anderson, Dielectrics, Spottiswoode (Ballantyne & Co Ltd., London, 1964)

    Google Scholar 

  38. A. Jain, Y.G. Wang, N. Wang, Y. Li, F.L. Wang, Tuning the dielectric, ferroelectric and electromechanical properties of Ba0.83Ca0.10Sr0.07TiO3–MnFe2O4 multiferroic composites. Ceram. Int. 46, 7576–7585 (2020)

    Google Scholar 

  39. H.B. Lu, X.Y. Zhang, Influence of the relaxation of Maxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviours of nylon 1010. J. Appl. Phys. 100, 054104 (2006)

    ADS  Google Scholar 

  40. S. Katlakuntaa, P. Rajua, S.S. Meena, S. Srinath, R. Sandhya, P. Kuruva, S.R. Murthy, Multiferroic properties of microwave sintered BaTiO3-SrFe12O19 composites. Phys. Rev. B: Condens. Matter 448, 323–326 (2014)

    ADS  Google Scholar 

  41. D.R. Patil, S.A. Lokare, S.S. Chougule, B.K. Chougule, Dielectric and magnetic properties of xNiFe2O4+(1–x)Ba0.9Sr0.1TiO3 composites. Phys. B Condens. Matter 400, 77–82 (2007)

    ADS  Google Scholar 

  42. D. Pandey, N. Singh, S.K. Mishra, Diffuse ferroelectric transition and relaxational dipolar freezing (Ba, Sr)TiO3:II Role of Sr concentration in the dynamics of freezing Ind. J. Pure Appl. Phys. 32, 616 (1994)

    Google Scholar 

  43. M.R. Bhandare, H.V. Jamadar, A.T. Pathan, B.K. Chougule, A.M. Shaikh, Dielectric properties of Cu substituted Ni0.5−xZn0.3Mg0.2Fe2O4 ferrites. J. Alloys Comp. 509, L113–L118 (2011)

    Google Scholar 

  44. A.A. Sattar, S.A. Rahman, Dielectric properties of rare earth substituted Cu–Zn ferrites. Phys. Stat. Sol(a) 200, 415–422 (2003)

    ADS  Google Scholar 

  45. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. J. Appl. Phys. 115, 144106 (2014)

    ADS  Google Scholar 

  46. Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, Z. Sun, Fabrication, structure and properties of BaTiO3–BaFe12O19 composites with core-shell heterostructure. J. Eur. Ceram. Soc. 35, 3513–3520 (2015)

    Google Scholar 

  47. P. Sarah, S.V. Suryanarayana, Magnetic properties of diphasic composites of LiFe5O8-BaTiO3. Indian J. Phys. 77, 449 (2003)

    Google Scholar 

  48. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Temperature dependence of electrical properties of nickel-zinc ferrites processed by the citrate precursor technique. Mater. Sci. Eng. B 116, 1–6 (2005)

    Google Scholar 

  49. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9 La0.1FeO3. J. Appl. Phys. 106, 024102 (2009)

    ADS  Google Scholar 

  50. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3855 (1989)

    ADS  Google Scholar 

  51. M.A.L. Nobre, S. Lanfredi, Ferroelectric state analysis in the grain boundary of Na0.85Li0.15NbO3 ceramic. J. Appl. Phys. 93, 5557–5562 (2003)

    ADS  Google Scholar 

  52. I. D. Raistrick, J. R. Macdonald, and D. R. Franceschetti. "Impedance spectroscopy." Emphasizing Solid Mater. Syst. 27 (1987)

  53. J.R. Macdonald, Note on the parameterization of the constant phase admittance element. Solid State Ion. 13, 147–149 (1984)

    ADS  Google Scholar 

  54. M.H. Khan, S. Pal, E. Bose, Room-temperature frequency-dependent complex impedance and conductivity behaviour of BaTiO3–La0.7Ca0.3MnO3 composites. Can. J. Phys. 91(12), 1029–1033 (2013)

    ADS  Google Scholar 

  55. S. Dagar, A. Hooda, S. Khasa, M. Malik, Rietveld refinement, dielectric and magnetic properties of NBT-Spinel ferrite composites. J. Alloys Compd 806, 737–752 (2019)

    Google Scholar 

  56. S.G.C. Fonseca, L.S. Neiva, M.A.R. Bonifácio, P.R.C. Dos Santos, U.C. Silva, J.B.L. De Oliveira, Tunable magnetic and electrical properties of cobalt and zinc ferrites Co1-xZnxFe2O4 synthesized by combustion route. Mater. Res. 21, 1–9 (2018)

    Google Scholar 

  57. L. Ju, C. Shi, L. Sun, Y. Zhang, H. Qin, J. Hu, Room-temperature magnetoelectric coupling in nanocrystalline Na0.5Bi0.5TiO3. J. Appl. Phys. 116, 083909 (2014)

    ADS  Google Scholar 

  58. Z. Huai-Wu, L. Jie, S. Hua, Z. Ting-Chuan, L. Yang, Z. Zong-Liang, Chin. Phys. B 22, 117504 (2013)

    ADS  Google Scholar 

  59. S.A. Mathews, D. Rajan Babu, Analysis of the role of M-type hexaferrite-based materials in electromagnetic interference shielding. Curr. Appl. Phys. 29, 39–53 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to DST, New Delhi for providing the XRD facility under the FIST Scheme to the department (SR/FST/PSI-089/2005). Anand Kumari is thankful to CSIR for the award of junior research fellowship (09/752/(0063)/2016-EMR-I). Ashish Agarwal and Sujata Sanghi are also thankful to DST, New Delhi for providing funds under the PURSE program vide grant number SR/PURSE Phase 2/40(G).

Author information

Authors and Affiliations

Authors

Contributions

AK was involved in the investigation, data curation, conceptualization and writing original draft, OS contributed to software visualization and validation, EA contributed to formal analysis and data curation, MC contributed to methodology and resources, VV contributed to resources and formal analysis, SS contributed in writing—review and editing, conceptualization and funding acquisition, AA contributed in supervision, project administration, writing original draft and validation.

Corresponding author

Correspondence to Ashish Agarwal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Singh, O., Arya, E. et al. Crystal structure, dielectric and magnetic properties of (1 − x)BaTiO3-(x)BaFe12O19 (x = 0.50, 0.60, 0.70) multiferroic composites. Appl. Phys. A 129, 334 (2023). https://doi.org/10.1007/s00339-023-06596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06596-z

Keywords

Navigation