Log in

Low-cost hydrogen peroxide sensor based on the dual fluorescence of Plinia cauliflora silver nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A low-cost and reliable detection of hydrogen peroxide is essential in the pharmaceutical, medical, and food industries, since H2O2 can cause irreversible cellular damage through the oxidation of biomolecules. This paper describes a sensitive luminescent sensor for H2O2 based on a dual fluorescence-colorimetric assay for determining the hydrogen peroxide using silver nanoparticles prepared with Plinia cauliflora extracts (PcAgNPs). Nanoparticles were characterized by UV–Vis, transmission electron microscopy, elemental analysis, Zeta potential, FTIR, and fluorescence. The average size of spherical particles was ~ 14 nm. The photoreduction process and pH control improved the nanoparticle's photophysical properties and stability. With pH adjustment, the Zeta potential of PcAgNPs prepared with fruit extract changed from ~ − 17 mV to ~ − 30 mV. The behavior of the PcAgNPs SPR and fluorescence bands were studied in the presence of H2O2. The SPR band of PcAgNPs around 420 nm gradually decreased upon the increasing concentration of H2O2, while the PcAgNPs emission has an enhancement and a shift (from ~ 470 to ~ 440 nm) in the presence of hydrogen peroxide. A calibration curve was obtained in the range of 0–5 μM, with a calculated detection limit of 0.15 μM. The present biosensor can be applied as an alternative method for detecting hydrogen peroxide in medical care and environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.P. Ribeiro, L.M. Magalhães, M.A. Segundo, S. Reis, J.L. Lima, Hydrogen peroxide, antioxidant compounds and biological targets: an in vitro approach for determination of scavenging capacity using fluorimetric multisyringe flow injection analysis. Talanta 81(4–5), 1840–1846 (2010). https://doi.org/10.1016/j.talanta.2010.03.049

    Article  Google Scholar 

  2. C.L. Hsu, K.S. Chang, J.C. Kuo, Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control 19(3), 223–230 (2008). https://doi.org/10.1016/j.foodcont.2007.01.004

    Article  Google Scholar 

  3. R. Gradini, C. Fei, T. Richmund, L. Newlin, A summary on cutting edge advancements in sterilization and cleaning technologies in medical, food, and drug industries, and its applicability to spacecraft hardware. Life Sci. Space Res. 23, 31–49 (2019). https://doi.org/10.1016/j.lssr.2019.05.002

    Article  ADS  Google Scholar 

  4. N. Christie-Holmes, R. Tyli, P. Budylowski, F. Guvenc, A. Weiner, B. Poon et al., Vapourized hydrogen peroxide decontamination in a hospital setting inactivates SARS-CoV-2 and HCoV-229E without compromising filtration efficiency of unexpired N95 respirators. Am. J. Infect. Control 49(10), 1227–1231 (2021). https://doi.org/10.1016/j.ajic.2021.07.012

    Article  Google Scholar 

  5. P.V. Mohanan, V. Sangeetha, A. Sabareeswaran, V. Muraleedharan, K. Jithin, U. Vandana et al., Safety of 0.5% hydrogen peroxide mist used in the disinfection gateway for COVID-19. Environ. Sci. Pollut. Res. 28(47), 66602–66612 (2022). https://doi.org/10.1007/s11356-021-15164-y

    Article  Google Scholar 

  6. C.Y.S. Chung, G.A. Timblin, K. Saijo, C.J. Chang, Versatile histochemical approach to detection of hydrogen peroxide in cells and tissues based on puromycin staining. J. Am. Chem. Soc. 140(19), 6109–6121 (2018). https://doi.org/10.1021/jacs.8b02279

    Article  Google Scholar 

  7. A. Abdalla, W. Jones, M.S. Flint, B.A. Patel, Bicomponent composite electrochemical sensors for sustained monitoring of hydrogen peroxide in breast cancer cells. Electrochim. Acta (2021). https://doi.org/10.1016/j.electacta.2021.139314

    Article  Google Scholar 

  8. 46th ESAO Congress 3-7 September 2019 Hannover, Germany Abstracts. Int. J. Artif. Organs. 2019;42(8):386–474. https://doi.org/10.1177/0391398819860985

  9. J. Meier, E.M. Hofferber, J.A. Stapleton, N.M. Iverson, Hydrogen peroxide sensors for biomedical applications. Chemosensors. (2019). https://doi.org/10.3390/chemosensors7040064

    Article  Google Scholar 

  10. C.P. Ge, Y. Yan, P.F. Tan, S. Hu, Y.B. **, Y.Y. Shang et al., A NIR fluorescent probe for the in vitro and in vivo selective detection of hydrogen peroxide. Sens. Actuators B Chem. (2022). https://doi.org/10.1016/j.snb.2021.130831

    Article  Google Scholar 

  11. E. Tan, İ Kahyaoğlu, S. Karakuş, A sensitive and smartphone colorimetric assay for the detection of hydrogen peroxide based on antibacterial and antifungal matcha extract silver nanoparticles enriched with polyphenol. Polym. Bull. (Berl.) (2021). https://doi.org/10.1007/s00289-021-03857-w

    Article  Google Scholar 

  12. Z.S. Jie, J. Liu, M.C. Shu, Y. Ying, H.F. Yang, Detection strategies for superoxide anion: a review. Talanta (2022). https://doi.org/10.1016/j.talanta.2021.122892

    Article  Google Scholar 

  13. H. Chu, L. Yang, L. Yu, J. Kim, J. Zhou, M. Li et al., Fluorescent probes in public health and public safety. Coord. Chem. Rev. (2021). https://doi.org/10.1016/j.ccr.2021.214208

    Article  Google Scholar 

  14. V.N. Nguyen, J. Ha, M. Cho, H.D. Li, K.M.K. Swamy, J. Yoon, Recent developments of BODIPY-based colorimetric and fluorescent probes for the detection of reactive oxygen/nitrogen species and cancer diagnosis. Coord. Chem. Rev. (2021). https://doi.org/10.1016/j.ccr.2021.213936

    Article  Google Scholar 

  15. C.R.B. Lopes, D. Santos, F.R.D. Silva, L.C. Courrol, High-sensitivity Hg2+ sensor based on the optical properties of silver nanoparticles synthesized with aqueous leaf extract of Mimusops coriacea. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-021-04391-2

    Article  Google Scholar 

  16. D. Sun, D. Yang, P. Wei, B. Liu, Z. Chen, L. Zhang et al., One-step electrodeposition of silver nanostructures on 2D/3D metal-organic framework ZIF-67: comparison and application in electrochemical detection of hydrogen peroxide. ACS Appl Mater Interfaces 12(37), 41960–41968 (2020). https://doi.org/10.1021/acsami.0c11269

    Article  Google Scholar 

  17. S. Teerasong, T. Sonsa-Ard, C. Vimolkanjana, N. Choengchan, A. Chompoosor, D. Nacapricha, Colorimetric sensor using silver nanoparticles for determination of hydrogen peroxide based on a flow injection system. J. Nanoelectron. Optoelectron. 8(5), 446–449 (2013). https://doi.org/10.1166/jno.2013.1506

    Article  Google Scholar 

  18. A. Kalai Priya, G.K. Yogesh, K. Subha, V. Kalyanavalli, D. Sastikumar, Synthesis of silver nano-butterfly park by using laser ablation of aqueous salt for gas sensing application. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-021-04370-7

    Article  Google Scholar 

  19. V.V. Apyari, E.A. Terenteva, A.R. Kolomnikova, A.V. Garshev, S.G. Dmitrienko, Y.A. Zolotov, Potentialities of differently-stabilized silver nanoparticles for spectrophotometric determination of peroxides. Talanta 202, 51–58 (2019). https://doi.org/10.1016/j.talanta.2019.04.056

    Article  Google Scholar 

  20. M. Bilal, T. Rasheed, H.M.N. Iqbal, H.B. Hu, X.H. Zhang, Silver nanoparticles: biosynthesis and antimicrobial potentialities. Int. J. Pharmacol. 13(7), 832–845 (2017). https://doi.org/10.3923/ijp.2017.832.845

    Article  Google Scholar 

  21. N.M. Alabdallah, M.M. Hasan, Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J. Biol. Sci. 28(10), 5631–5639 (2021). https://doi.org/10.1016/j.sjbs.2021.05.081

    Article  Google Scholar 

  22. M. Ghaffari-Moghaddam, R. Hadi-Dabanlou, M. Khajeh, M. Rakhshanipour, K. Shameli, Green synthesis of silver nanoparticles using plant extracts. Korean J. Chem. Eng. 31(4), 548–557 (2014). https://doi.org/10.1007/s11814-014-0014-6

    Article  Google Scholar 

  23. N. Kannan, S. Subbalaxmi, Biogenesis of nanoparticles—a current perspective. Rev. Adv. Mater. Sci. 27(2), 99–114 (2011)

    Google Scholar 

  24. Priya AK, Rao SK, Yogesh GK, Rohini P, Sastikumar D. Green synthesis of Silver Nanoparticles by Pulsed Laser ablation using Citrus Limetta juice extract for Clad-Modified Fiber Optic gas sensing application. Conference on Nanoengineering - Fabrication, Properties, Optics, Thin Films, and Devices XVIII. San Diego, CA (2021)

  25. Priya AK, Sastikumar D. Nano-second Pulsed Laser Ablation and Transformation of Bulk Titanium dioxide (TiO2) into Nano-Particles for Fiber Optic Gas Sensor. 64th DAE Solid State Physics Symposium (DAE-SSPS). Indian inst Technol Jodhpur, Jodhpur, INDIA2019.

  26. C.R. Borges, R.E. Samad, K.D. Goncalves, D.P. Vieira, L.C. Courrol, Interaction between protoporphyrin IX and tryptophan silver nanoparticles. J. Nanopart. Res. (2018). https://doi.org/10.1007/s11051-018-4269-4

    Article  Google Scholar 

  27. Kshirsagar P, Sangaru SS, Malvindi MA, Martiradonna L, Cingolani R, Pompa PP. Synthesis of highly stable silver nanoparticles by photoreduction and their size fractionation by phase transfer method. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2011;392(1):264–70. doi: https://doi.org/10.1016/j.colsurfa.2011.10.003.

  28. C.R.B. Lopes, L.C. Courrol, Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light. J. Lumin. 199, 183–187 (2018). https://doi.org/10.1016/j.jlumin.2018.03.030

    Article  Google Scholar 

  29. D.D. Courrol, C.R.B. Lopes, T.D. Cordeiro, M.R. Franzolin, N.D. Vieira, R.E. Sarnad et al., Optical properties and antimicrobial effects of silver nanoparticles synthesized by femtosecond laser photoreduction. Opt. Laser Technol. 103, 233–238 (2018). https://doi.org/10.1016/j.optlastec.2018.01.044

    Article  ADS  Google Scholar 

  30. R.A. de Matos, L.C. Courrol, Biocompatible silver nanoparticles prepared with amino acids and a green method. Amino Acids 49(2), 379–388 (2017). https://doi.org/10.1007/s00726-016-2371-4

    Article  Google Scholar 

  31. K.D. Goncalves, F.R.D. Silva, D.P. Vieira, L.C. Courrol, Synthesis and characterization of aminolevulinic acid with gold and iron nanoparticles by photoreduction method for non-communicable diseases diagnosis and therapy. J. Mater. Sci. Mater. Electron. 30(18), 16789–16797 (2019). https://doi.org/10.1007/s10854-019-01337-6

    Article  Google Scholar 

  32. J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4), 1357–1361 (2003). https://doi.org/10.1021/la020835i

    Article  Google Scholar 

  33. M. Yilmaz, H. Turkdemir, M.A. Kilic, E. Bayram, A. Cicek, A. Mete et al., Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater. Chem. Phys. 130(3), 1195–1202 (2011). https://doi.org/10.1016/j.matchemphys.2011.08.068

    Article  Google Scholar 

  34. V. Gopinath, D. MubarakAli, S. Priyadarshini, N.M. Priyadharsshini, N. Thajuddin, P. Velusamy, Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf. B Biointerfaces 96, 69–74 (2012). https://doi.org/10.1016/j.colsurfb.2012.03.023

    Article  Google Scholar 

  35. M. Vanaja, G. Annadurai, Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 3(3), 217–223 (2013). https://doi.org/10.1007/s13204-012-0121-9

    Article  ADS  Google Scholar 

  36. P.M. Mishra, L. Sundaray, G.K. Naik, K.M. Parida, Biomimetic synthesis of silver nanoparticles by aqueous extract of Cinnamomum tamala leaves: optimization of process variables. Nanosci. Nanotechnol. Lett. 6(5), 409–414 (2014). https://doi.org/10.1166/nnl.2014.1771

    Article  Google Scholar 

  37. S.M. Amini, Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater. Sci. Eng. C Mater. Biol. Appl. (2019). https://doi.org/10.1016/j.msec.2019.109809

    Article  Google Scholar 

  38. G. Oza, A. Reyes-Calderon, A. Mewada, L.G. Arriaga, G.B. Cabrera, D.E. Luna, et al., Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. J. Mater. Sci. https://doi.org/10.1007/s10853-019-04121-3

  39. M.R. Franzolin, DdSC, SdSB, A.L.C. Courrol, Eugenia uniflora L. silver and gold nanoparticle synthesis, characterization, and evaluation of the photoreduction process in antimicrobial activities. Microorganisms (2022). https://doi.org/10.3390/microorganisms10050999

  40. D.T. Santos, P.C. Veggi, M.A.A. Meireles, Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: yield, composition and economical evaluation. J. Food Eng. 101(1), 23–31 (2010). https://doi.org/10.1016/j.jfoodeng.2010.06.005

    Article  Google Scholar 

  41. A.D.J. Boari Lima, A.D. Correa, A.P. Carvalho Alves, C.M. Patto Abreu, A.M. Dantas-Barros, Chemical characterization of the jabuticaba fruits (Myrciaria cauliflora Berg) and their fractions. Arch. Latinoam. Nutr. 58(4), 416–421 (2008)

    Google Scholar 

  42. J.C. Baldin, E.C. Michelin, Y.J. Polizer, I. Rodrigues, S.H. Seraphin de Godoy, R.P. Fregonesi et al., Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity. Meat Sci. 118, 15–21 (2016). https://doi.org/10.1016/j.meatsci.2016.03.016

    Article  Google Scholar 

  43. T.M. Souza-Moreira, J.A. Severi, E.R. Rodrigues, M.I. de Paula, J.A. Freitas, W. Vilegas et al., Flavonoids from Plinia cauliflora (Mart.) Kausel (Myrtaceae) with antifungal activity. Nat. Prod. Res. 33(17), 2579–2582 (2019). https://doi.org/10.1080/14786419.2018.1460827

    Article  Google Scholar 

  44. G. Mannino, A. Perrone, C. Campobenedetto, A. Schittone, C.M. Bertea, C. Gentile, Phytochemical profile and antioxidative properties of Plinia trunciflora fruits: a new source of nutraceuticals. Food Chem. 307, 8 (2020). https://doi.org/10.1016/j.foodchem.2019.125515

    Article  Google Scholar 

  45. A.G. Junior, P. de Souza, F.A.D. Livero, Plinia cauliflora (Mart) Kausel: a comprehensive ethnopharmacological review of a genuinely Brazilian species. J. Ethnopharmacol. (2019). https://doi.org/10.1016/j.jep.2019.112169

    Article  Google Scholar 

  46. A.D.J. Boari Lima, A.D. Correa, A.A. Saczk, M.P. Martins, R.O. Castilho, Anthocyanins, pigment stability and antioxidant activity in jabuticaba Myrciaria cauliflora (Mart.) O. Berg. Rev. Bras. Frutic. 33(3), 877–887 (2011)

    Article  Google Scholar 

  47. K. Csepregi, M. Kocsis, E. Hideg, On the spectrophotometric determination of total phenolic and flavonoid contents. Acta Biol. Hung. 64(4), 500–509 (2013). https://doi.org/10.1556/ABiol.64.2013.4.10

    Article  Google Scholar 

  48. Z. Jurasekova, J.V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Surface-enhanced Raman scattering of flavonoids. J. Raman Spectrosc. 37(11), 1239–1241 (2006). https://doi.org/10.1002/jrs.1634

    Article  ADS  Google Scholar 

  49. M. Hasegawa, M. Terauchil, Y. Kikuchi, A. Nakao, J. Okubo, T. Yoshinaga et al., Deprotonation processes of ellagic acid in solution and solid states. Monatshefte Fur Chemie 134(6), 811–821 (2003). https://doi.org/10.1007/s00706-002-0552-1

    Article  Google Scholar 

  50. D.M. Sampaio, R.S. Babu, H.R.M. Costa, A.L.F. de Barros, Investigation of nanostructured TiO2 thin film coatings for DSSCs application using natural dye extracted from jabuticaba fruit as photosensitizers. Ionics 25(6), 2893–2902 (2019). https://doi.org/10.1007/s11581-018-2753-6

    Article  Google Scholar 

  51. T.K. Patle, K. Shrivas, R. Kurrey, S. Upadhyay, R. Jangde, R. Chauhan, Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV-Vis and FTIR spectroscopy. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. (2020). https://doi.org/10.1016/j.saa.2020.118717

    Article  Google Scholar 

  52. I.O. Faniyi, O. Fasakin, B. Olofinjana, A.S. Adekunle, T.V. Oluwasusi, M.A. Eleruja et al., The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches. Sn Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-1188-7

    Article  Google Scholar 

  53. A.A. Abdelwahab, Y.B. Shim, Nonenzymatic H2O2 sensing based on silver nanoparticles capped polyterthiophene/MWCNT nanocomposite. Sens. Actuators B Chem. 201, 51–58 (2014). https://doi.org/10.1016/j.snb.2014.05.004

    Article  Google Scholar 

  54. Y. Li, P.P. Zhang, Z.F. Ouyang, M.F. Zhang, Z.J. Lin, J.F. Li et al., Nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3d membrane-modified electrode, and super performance for electrochemical sensing. Adv. Funct. Mater. 26(13), 2122–2134 (2016). https://doi.org/10.1002/adfm.201504533

    Article  Google Scholar 

  55. Z.B. **ang, Y. Wang, P. Ju, D. Zhang, Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim. Acta 183(1), 457–463 (2016). https://doi.org/10.1007/s00604-015-1670-x

    Article  Google Scholar 

  56. A. Elgamouz, K. Bajou, B. Hafez, C. Nassab, A. Behi, M. Abu Haija et al., Optical sensing of hydrogen peroxide using starch capped silver nanoparticles, synthesis, optimization and detection in urine. Sens. Actuators Rep. (2020). https://doi.org/10.1016/j.snr.2020.100014

    Article  Google Scholar 

  57. J.S. Liu, Z.Z. Dong, C. Yang, G.D. Li, C. Wu, F.W. Lee et al., Turn-on luminescent probe for hydrogen peroxide sensing and imaging in living cells based on an iridium(III) complex-silver nanoparticle platform. Sci Rep. (2017). https://doi.org/10.1038/s41598-017-09478-6

    Article  Google Scholar 

  58. A. Ruby, M.S. Mehata, Surface plasmon resonance allied applications of silver nanoflowers synthesized from Breynia vitis-idaea leaf extract. Dalton Trans. 51(7), 2726–2736 (2022). https://doi.org/10.1039/d1dt03592d

    Article  Google Scholar 

  59. D. Helena, M.B. Andressa, F.F.A. Celio, M.P. Glaucia, B.B.C. Cinthia, R.M. Mario, Influence of different types of acids and pH in the recovery of bioactive compounds in Jabuticaba peel (Plinia cauliflora). Food Res. Int. 124, 16–26 (2019). https://doi.org/10.1016/j.foodres.2019.01.010

    Article  Google Scholar 

  60. P.W. Connelly, D. Draganov, G.F. Maguire, Paraoxonase-1 does not reduce or modify oxidation of phospholipids by peroxynitrite. Free Radic. Biol. Med. 38(2), 164–174 (2005). https://doi.org/10.1016/j.freeradbiomed.2004.10.010

    Article  Google Scholar 

  61. Y.S. Liu, Y.C. Chang, H.H. Chen, Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants. J. Food Drug Anal. 26(2), 649–656 (2018). https://doi.org/10.1016/j.jfda.2017.07.005

    Article  Google Scholar 

  62. N.D. Neves, P.C. Stringheta, I.F. da Silva, E. Garcia-Romero, S. Gomez-Alonso, I. Hermosin-Gutierrez, Identification and quantification of phenolic composition from different species of Jabuticaba (Plinia spp.) by HPLC-DAD-ESI/MSn. Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2021.129605

    Article  Google Scholar 

  63. E. Bulut, M. Ozacar, Rapid, facile synthesis of silver nanostructure using hydrolyzable tannin. Ind. Eng. Chem. Res. 48(12), 5686–5690 (2009). https://doi.org/10.1021/ie801779f

    Article  Google Scholar 

  64. Y.S. Rao, V.S. Kotakadi, T. Prasad, A.V. Reddy, D. Gopal, Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 103, 156–159 (2013). https://doi.org/10.1016/j.saa.2012.11.028

    Article  ADS  Google Scholar 

  65. S. Rajeshkumar, L.V. Bharath, Mechanism of plant-mediated synthesis of silver nanoparticles—a review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact. 273, 219–227 (2017). https://doi.org/10.1016/j.cbi.2017.06.019

    Article  Google Scholar 

  66. T.Y. Kim, S.H. Cha, S. Cho, Y. Park, Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. Arch Pharm Res. 39(4), 465–473 (2016). https://doi.org/10.1007/s12272-016-0718-8

    Article  Google Scholar 

  67. F. Tasca, R. Antiochia, Biocide activity of green quercetin-mediated synthesized silver nanoparticles. Nanomaterials (2020). https://doi.org/10.3390/nano10050909

    Article  Google Scholar 

  68. S.N. Barnaby, S.M. Yu, K.R. Fath, A. Tsiola, O. Khalpari, I.A. Banerjee, Ellagic acid promoted biomimetic synthesis of shape-controlled silver nanochains. Nanotechnology 22(22), 225605 (2011). https://doi.org/10.1088/0957-4484/22/22/225605

    Article  ADS  Google Scholar 

  69. S.A. Al-Thabaiti, Z. Khan, Biogenic synthesis of silver nanoparticles, sensing and photo catalytic activities for bromothymol blue. J. Photochem. Photobiol 3-4, 100010 (2020). https://doi.org/10.1016/j.jpap.2020.100010

  70. S.L. Smith, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 71(1), 186–190 (2008). https://doi.org/10.1016/j.saa.2007.12.002

    Article  ADS  Google Scholar 

  71. Z. Parang, A. Keshavarz, S. Farahi, S.M. Elahi, M. Ghoranneviss, S. Parhoodeh, Fluorescence emission spectra of silver and silver/cobalt nanoparticles. Scientia Iranica 19(3), 943–947 (2012). https://doi.org/10.1016/j.scient.2012.02.026

    Article  Google Scholar 

  72. U. Anik, S. Timur, Z. Dursun, Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim. Acta (2019). https://doi.org/10.1007/s00604-019-3321-0

    Article  Google Scholar 

  73. Y.X. Liao, K. Li, M.Y. Wu, T. Wu, X.Q. Yu, A selenium-contained aggregation-induced “turn-on” fluorescent probe for hydrogen peroxide. Org. Biomol. Chem. 12(19), 3004–3008 (2014). https://doi.org/10.1039/c4ob00206g

    Article  Google Scholar 

  74. J.S. Liu, G.N. Liu, W.X. Liu, Y.R. Wang, Turn-on fluorescence sensor for the detection of heparin based on rhodamine B-modified polyethyleneimine-graphene oxide complex. Biosens. Bioelectron. 64, 300–305 (2015). https://doi.org/10.1016/j.bios.2014.09.023

    Article  Google Scholar 

Download references

Funding

This work was supported by Grant 303715/2017-0, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia Coronato Courrol.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest concerning the research, authorship, and/or publication of this Article.

Credit authorship contribution statement

LCC: formal analysis, investigation, validation, resources, writing—original draft. KOG and FROS: data colection.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Gonçalves, K., Silva, F.R.O. & Courrol, L.C. Low-cost hydrogen peroxide sensor based on the dual fluorescence of Plinia cauliflora silver nanoparticles. Appl. Phys. A 128, 692 (2022). https://doi.org/10.1007/s00339-022-05821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05821-5

Keywords

Navigation