Log in

Sequel of divalent zinc substitution on structural, electrical and thermal properties of bismuth ferrite ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline ceramic samples of BiFe1−xZnxO3 (x = 0.00 and 0.05) have been prepared by sol–gel synthesis method. The formation of the compound has been checked by the X-ray analysis and confirmed the observed data by matching with the standard data (ICSD-97591). The Rietveld analysis confirmed the rhombohedral symmetry with space group R3c. The average crystallite size calculated by the Scherrer method is well matching with that calculated by Williamson–Hall plot method and is of the order of nanometre range. The two- and three-dimensional surface morphology has been measured using atomic force microscopy. The dielectric parameters, including dielectric constant, impedance, etc., have been measured and explained using the universal dielectric response model. The electrical modulus study explains the transport behaviour of the materials. The activation energies calculated by the dc conductivity measurement and the I–V characteristics indicate that both the materials show semiconducting behaviour. Thermal analysis has been used to check the high temperature phase transition and thermal stability of the materials. The room temperature FTIR spectra measured in the fingerprint region (750 cm−1 to 400 cm−1) explains the molecular symmetry of the materials. All the results have been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Y. Han, Y. Ma, C. Quan, N. Gao, Q. Zhang, W. Mao, W. Huang, Substitution-driven structural, optical and magnetic transformation of Mn, Zn doped BiFeO3. Ceram. Int. 41(2), 2476–2483 (2015)

    Article  Google Scholar 

  2. A.S. Bhalla, R. Guo, R. Roy, The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4(1), 3–26 (2000)

    Article  Google Scholar 

  3. R. Chakraborty, S. Mukherjee, S. Mukherjee, Effect of zinc do** on phase evolution and characterization of nanocrystalline bismuth ferrite synthesized by chemical solution route. J. Aust. Ceram. Soc. 53(1), 57–65 (2017)

    Article  Google Scholar 

  4. W. Eerenstein, M. Wiora, J.L. Prieto, J.F. Scott, N.D. Mathur, Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007)

    Article  ADS  Google Scholar 

  5. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309(5733), 391–392 (2005)

    Article  Google Scholar 

  6. P. Bongurala, V. Gorige, Structural, magnetic and electric properties of multiferroic NiFe2O4–BaTiO3 composites. J. Magn. Magn. Mater. 477, 350–355 (2019)

    Article  ADS  Google Scholar 

  7. A. Testino, L. Mitoseriu, V. Buscaglia, M.T. Buscaglia, I. Pallecchi, A.S. Albuquerque, P. Nanni, Preparation of multiferroic composites of BaTiO3–Ni0.5Zn0.5Fe2O4 ceramics. J. Eur. Ceram. Soc. 26(14), 3031–3036 (2006)

    Article  Google Scholar 

  8. B. Sarkar, B. Dalal, V. Dev Ashok, K. Chakrabarti, A. Mitra, S.K. De, Magnetic properties of mixed spinel BaTiO3–NiFe2O4 composites. J. Appl. Phys. 115(12), 123908 (2014)

    Article  ADS  Google Scholar 

  9. M. Khan, A. Mishra, J. Shukla, P. Sharma, Structural, optical and electrical properties of BaTiO3–NiFe2O4 based multifunctional composites, in AIP Conference Proceedings  2142(1), 160012-1–160012-5 (2019)

  10. N.A. Benedek, C.J. Fennie, Why are there so few perovskite ferroelectrics? J. Phys. Chem. C 117(26), 13339–13349 (2013)

    Article  Google Scholar 

  11. L.H. Yin, Y.P. Sun, F.H. Zhang, W.B. Wu, X. Luo, X.B. Zhu, R.L. Zhang, Magnetic and electrical properties of Bi0.8Ca0.2Fe1xMnxO3. J. Alloys Compd. 488(1), 254–259 (2009)

    Article  Google Scholar 

  12. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71(6), 060401 (2005)

    Article  ADS  Google Scholar 

  13. H. Wadati, J. Okamoto, M. Garganourakis, V. Scagnoli, U. Staub, Y. Yamasaki, M. Kawasaki, Origin of the large polarization in multiferroic YMnO3 thin films revealed by soft-and hard-X-ray diffraction. Phys. Rev. Lett. 108(4), 047203 (2012)

    Article  ADS  Google Scholar 

  14. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and Magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    Article  ADS  Google Scholar 

  15. V. K. Jha, M. Roy, S. N. Alam, Experimental studies of structural, electrical and thermal properties of multifunctional BiFeO3 ceramic, in AIP Conference Proceedings 2104(1), 020020(1–5) (2019).

  16. M. Valant, A.K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater. 19(22), 5431–5436 (2007)

    Article  Google Scholar 

  17. Z. Chen, J. Hu, Z. Lu, X. He, Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol–gel-hydrothermal method. Ceram. Int. 37(7), 2359–2364 (2011)

    Article  Google Scholar 

  18. F. Bhadala, L. Suthar, M. Roy, Structural, dielectric and thermal properties of 0.25BFO-0.75CTO composite, in AIP Conference Proceedings 2100(1), 020144(1–6) (2019).

  19. M. Roy, S. Jangid, S.K. Barbar, P. Dave, Electrical and magnetic properties of BiFeO3 multiferroic ceramics. J. Magn. 14(2), 62–65 (2009)

    Article  Google Scholar 

  20. Q. Xu, H. Zai, D. Wu, Y.K. Tang, M.X. Xu, The magnetic properties of BiFeO3 and Bi(Fe0.95Zn0.05)O3. J. Alloys Compd. 485(1–2), 13–16 (2009)

    Article  Google Scholar 

  21. F. Bhadala, L. Suthar, M. Roy, V. K. Jha, Dielectric and transport properties of CaTiO3, in AIP Conference Proceedings  1953(1), 050028-1–050028-6 (2018)

  22. L. Suthar, V.K. Jha, F. Bhadala, M. Roy, S. Sahu, S.K. Barbar, Studies on structural, electrical, thermal and magnetic properties of YFeO3 ceramic. Appl. Phys. A 123(10), 668 (2017)

    Article  ADS  Google Scholar 

  23. F. Bhadala, L. Suthar, M. Roy, Study of structural, dielectric and optical properties of zinc doped bismuth ferrite, in AIP Conference Proceedings, vol. 2220, no. 1 (2020), pp. 040026-1–040026-6

  24. Y. Yoneda, Y. Kitanaka, Y. Noguchi, M. Miyayama, Electronic and local structures of Mn-doped BiFeO3 crystals. Phys. Rev. B 86(18), 184112 (2012)

    Article  ADS  Google Scholar 

  25. F. Bhadala, V.K. Jha, L. Suthar, M. Roy, Synthesis, structural, electrical and thermal properties of ScFeO3 ceramic. Am. J. Mod. Phys. 6(6), 132–139 (2017)

    Article  Google Scholar 

  26. H. Bouaamlat, N. Hadi, N. Belghiti, H. Sadki, M. Naciri Bennani, F. Abdi, M. Abarkan, Dielectric properties, AC conductivity, and electric modulus analysis of bulk ethylcarbazole-terphenyl. Adv. Mater. Sci. Eng. 8689150(1-8) (2020)

  27. W. Cao, R. Gerhardt, Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ionics 42(3–4), 213–221 (1990)

    Article  Google Scholar 

  28. R. Singh, R.P. Tandon, V.S. Panwar, S. Chandra, Low-frequency ac conduction in lightly doped polypyrrole films. J. Appl. Phys. 69(4), 2504–2511 (1991)

    Article  ADS  Google Scholar 

  29. J. M. Stevels, The electrical properties of glass, in Electrical Conductivity II/Elektrische Leitungsphänomene II (Springer, Berlin, 1957), pp. 350–391.

  30. T.T. Fang, C.P. Liu, Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem. Mater. 17(20), 5167–5171 (2005)

    Article  ADS  Google Scholar 

  31. C. Yang, C.Z. Liu, C.M. Wang, W.G. Zhang, J.S. Jiang, Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles. J. Magn. Magn. Mater. 324(8), 1483–1487 (2012)

    Article  ADS  Google Scholar 

  32. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, V.K. Chakradhary, Correlation between structure, dielectric and multiferroic properties of lead free Ni modified BaTiO3 solid solution. Ceram. Int. 46(17), 27336–27351 (2020)

    Article  Google Scholar 

  33. W.K. Lee, J.F. Liu, A.S. Nowick, Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys. Rev. Lett. 67(12), 1559 (1991)

    Article  ADS  Google Scholar 

  34. M.T. Rahman, C.V. Ramana, Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. J. Appl. Phys. 116(16), 164108 (2014)

    Article  ADS  Google Scholar 

  35. M.R. Biswal, J. Nanda, N.C. Mishra, S. Anwar, A. Mishra, Dielectric and impedance spectroscopic studies of multiferroic BiFe1xNixO3. Adv. Mater. Lett. 5(9), 531–537 (2014)

    Article  Google Scholar 

  36. H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. B 176(7), 540–547 (2011)

    Article  Google Scholar 

  37. K. Abraham, A.K. Thomas, J. Thomas, K.V. Saban, Steady nature of dielectric behaviour in Sm1.5Sr0.5NiO4–CCTO composites. Mod. Electron. Mater. 5(4), 145–150 (2019)

    Article  Google Scholar 

  38. F. Tian, Y. Ohki, Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans. Dielectr. Electr. Insul. 21(3), 929–931 (2014)

    Article  Google Scholar 

  39. S.K. Tripathi, A. Gupta, M. Kumari, Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bull. Mater. Sci. 35(6), 969–975 (2012)

    Article  Google Scholar 

  40. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3. J. Phys. Condens. Matter 20(4), 045218 (2008)

    Article  ADS  Google Scholar 

  41. S. Hajra, S. Sahoo, T. Mishra, P.K. Rout, R.N.P. Choudhary, Studies of dielectric and electrical transport characteristics of BaTiO3–BiFeO3–CaSnO3 ternary system. Process. Appl. Ceram. 12(2), 164–170 (2018)

    Article  Google Scholar 

  42. S. Sahoo, S. Hajra, M. De, R.N.P. Choudhary, Resistive, capacitive and conducting properties of Bi0.5Na0.5TiO3–BaTiO3 solid solution. Ceram. Int. 44(5), 4719–4726 (2018)

    Article  Google Scholar 

  43. H. Matsuo, Y. Noguchi, M. Miyayama, Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications. Nat. Commun. 8(1), 1–8 (2017)

    Article  Google Scholar 

  44. F. Bhadala, L. Suthar, P. Kumari, M. Roy, Rietveld refinement, morphological, vibrational, Raman, optical and electrical properties of Ca/Mn co-doped BiFeO3. Mater. Chem. Phys. 247(1–9), 122719 (2020)

    Article  Google Scholar 

  45. A. Sasmal, S. Sen, P.S. Devi, Significantly suppressed leakage current and reduced band gap of BiFeO3 through Ba–Zr co-substitution: structural, optical, electrical and magnetic study. Mater. Chem. Phys. 254(1–26), 123362 (2020)

    Article  Google Scholar 

  46. L. Suthar, F. Bhadala, M. Roy, The impact of Bi3+ substitution for Y3+ cation on structural, topographical, electrical and thermal behaviour of YFeO3. Ceram. Int. 45(16), 20891–20899 (2019)

    Article  Google Scholar 

  47. L. Suthar, V.K. Jha, F. Bhadala, M. Roy, Synthesis, electrical and IR spectroscopy of calcium substituted yttrium ferrite ceramics. Mater. Today Proc. 26, 3353–3356 (2020)

    Article  Google Scholar 

  48. H. Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41(8), 9285–9295 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

FB is thankful to UGC for providing NET-JRF fellowship. LS is thankful for BSR fellowship. We are also thankful to Prof. N. Lakshmi, Prof. S. Kumar, Prof. M.S. Dhaka and Dr. P.K. Baroliya in hel** us in XRD, AFM, I-V and FTIR measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhadala, F., Suthar, L. & Roy, M. Sequel of divalent zinc substitution on structural, electrical and thermal properties of bismuth ferrite ceramics. Appl. Phys. A 127, 320 (2021). https://doi.org/10.1007/s00339-021-04383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04383-2

Keywords

Navigation