Log in

A computational study of porosity formation mechanism, flow characteristics and solidification microstructure in the L-DED process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser-assisted directed energy deposition is an additive manufacturing process used to manufacture metallic parts. The gas porosity is one of the prominent deposition defects in the processed parts. This influences the mechanical properties which can cause the part failure. In this work, the mechanism of gas porosity formation at low energy density is addressed using computational modeling. An investigation is carried out to capture the powder particles interaction with the melt pool and resulting porosity formation, molten pool hydrodynamics, and solidification microstructure in the L-DED process. The numerical results reveal that the stagnant zone in the melt pool leads to entrapment of bubbles which eventually forms porosity. This bubble entrapment phenomenon is studied by varying the powder mass flow rate, and it is found that increasing the mass flow rate results in rapid bubble formation which increases the chances of gas porosity formation. The temperature gradient and cooling rates are used for solidification analysis and prediction of as-solidified grain morphology. Using the empirical relation, the effect of local thermodynamic solidification conditions on the size of the dendritic microstructure is analyzed. The predicted melt pool geometry and porosity morphology agree with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data and material are available from the corresponding author upon reasonable request.

Code availability

The code is a part of an ongoing study and cannot be shared at this moment.

References

  1. A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, Appl. Sci. (2017). https://doi.org/10.3390/app7090883

    Article  Google Scholar 

  2. A. Uriondo, M. Esperon-Miguez, S. Perinpanayagam, J. Aerospace Eng. (2015). https://doi.org/10.1177/0954410014568797

    Article  Google Scholar 

  3. F. Trevisan, F. Calignano, A. Aversa, G. Marchese, M. Lombardi, S. Biamino, D. Ugues, D. Manfredi, J. Appl. Biomater. Func. (2017). https://doi.org/10.5301/jabfm.5000371

    Article  Google Scholar 

  4. S. Nam, H. Cho, C. Kim, Y.M. Kim, Metals. (2018). https://doi.org/10.3390/met8080607

    Article  Google Scholar 

  5. G.K.L. Ng, A.E.W. Jarfors, G. Bi, H.Y. Zheng, Appl. Phys. A. (2009). https://doi.org/10.1007/s00339-009-5266-3

    Article  Google Scholar 

  6. A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Appl. Sci. (2019). https://doi.org/10.3390/app9163316

    Article  Google Scholar 

  7. A. Saboori, G. Piscopo, M. Lai, A. Salmi, S. Biamino, Mater. Sci. Eng. A. (2020). https://doi.org/10.1016/j.msea.2020.139179

    Article  Google Scholar 

  8. A. Saboori, A. Aversa, F. Bosio, E. Bassini, E. Librera, M.D. Chirico, S. Biamino, D. Ugues, P. Fino, M. Lombardi, Mater. Sci. Eng. A. (2019). https://doi.org/10.1016/j.msea.2019.138360

    Article  Google Scholar 

  9. S. Shrestha, T. Starr, K. Chou, ASME. J. Manuf. Sci. Eng. (2019). https://doi.org/10.1115/1.4043622

    Article  Google Scholar 

  10. M. Khanzadeh, S. Chowdhury, M.A. Tschopp, H.R. Doude, M. Marufuzzaman, L. Bian, IISE Trans. (2019). https://doi.org/10.1080/24725854.2017.1417656

    Article  Google Scholar 

  11. R. Li, Z. Chen, J. Gu, Y. Wang, M. Wu, Y. Tian, Mater. Tehnol. (2019). https://doi.org/10.17222/mit.2018.241

    Article  Google Scholar 

  12. P. Peyre, M. Dal, S. Pouzet, O. Castelnau, J. Laser. Appl. (2017). https://doi.org/10.2351/1.4983251

    Article  Google Scholar 

  13. H. Qi, J. Mazumder, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2209807

    Article  Google Scholar 

  14. A. Aggarwal, A. Kumar, I.O.P. Conf, Ser. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/529/1/012001

    Article  Google Scholar 

  15. A.D. Brent, V.R. Voller, K.J. Reid, Numer. Heat Transf. A. (1988). https://doi.org/10.1080/10407788808913615

    Article  Google Scholar 

  16. A. Shah, A. Kumar, J. Ramkumar, J. Mater. Process. Technol. (2018). https://doi.org/10.1016/j.jmatprotec.2018.02.005

    Article  Google Scholar 

  17. Z. Gan, Y. Lian, S.E. Lin, K.K. Jones, W.K. Liu, G.J. Wagner, Integr. Mater. Manuf. Innov. (2018). https://doi.org/10.1007/s40192-019-00130-x

    Article  Google Scholar 

  18. L.H. Tan, S.S. Leong, E. Leonardi, T.J. Barber, Prog. Comput. Fluid Dy. (2006). https://doi.org/10.1504/PCFD.2006.010770

    Article  Google Scholar 

  19. R. Wang, Y. Lei, Y. Shi, Opt. Laser Technol. (2011). https://doi.org/10.1016/j.optlastec.2010.10.007

    Article  Google Scholar 

  20. C. Meacock, Laser powder microdeposition of biomedical alloys. Ph.D. dissertation (Instituto Superior Técnico Lisboa, Portugal, 2009).

    Google Scholar 

  21. A.R. Vinod, C.K. Srinivasa, R. Keshavamurthy, P.V. Shashikumar, Rapid Prototyp. J. (2016). https://doi.org/10.1108/RPJ-07-2013-0070

    Article  Google Scholar 

  22. O.B. Kovalev, A.V. Zaitsev, D. Novichenko, I. Smurov, J. Therm. Spray Technol. (2010). https://doi.org/10.1007/s11666-010-9539-3

    Article  Google Scholar 

  23. S. Zekovic, R. Dwivedi, R. Kovacevic, Int. J. Mach. Tools Manuf. (2007). https://doi.org/10.1016/j.ijmachtools.2006.02.004

    Article  Google Scholar 

  24. J. R. I. Medina, Development and application of a CFD model of laser-assisted directed energy deposition process. Ph.D. dissertation (The University of Manchester, United Kingdom, 2013).

  25. R.R. Rai, J.W. Elmer, T.A. Palmer, T. Debroy, J. Phys. D Appl. Phys. (2007). https://doi.org/10.1088/0022-3727/40/18/037

    Article  Google Scholar 

  26. J.W. Elmer, S.M. Allen, T.W. Eagar, Metall. Mater. Trans. A. (1989). https://doi.org/10.1007/BF02650298

    Article  Google Scholar 

  27. X. He, P.W. Fuerschbach, T. Debroy, J. Phys. D Appl. Phys. (2003). https://doi.org/10.1088/0022-3727/36/12/306

    Article  Google Scholar 

  28. A. Aggarwal, A. Chouhan, S. Patel, D.K. Yadav, A. Kumar, A.R. Vinod, K.G. Prashanth, N.P. Gurao, Int. J. Heat Mass Transf. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119989

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of DST-FIST, India (Grant No. SR/FST/ETII-066), DST, India (Grant No. DST/TDT/AMT/2017/118), and SERB, India (Grant No. IMP/2018/000293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, A., Aggarwal, A. & Kumar, A. A computational study of porosity formation mechanism, flow characteristics and solidification microstructure in the L-DED process. Appl. Phys. A 126, 833 (2020). https://doi.org/10.1007/s00339-020-04013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04013-3

Keywords

Navigation