Log in

Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, solution-processed resistive switches for wearable electronics have got tremendous attention and are required for different applications due to their easy process and fabrication. Hence, this paper proposes the solution-processed resistive switching memory device based on two polymers, poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)] (F8BT) and polyvinylpyrrolidone (PVP) composite, which is fabricated on a flexible indium–tin–oxide (ITO)-coated polyethylene terephthalate (PET) substrate through spin coating technology. The fabricated device demonstrates a perfect non-volatile bipolar resistive switching through small operating voltage swee** of ± 1.5 V, and its high-resistance state (HRS) and low-resistance state (LRS) are 92678.89 Ω and 337.85 Ω, respectively. To verify the non-volatility and long-term stability, the device is checked for more than 700 endurance cycles. During these cycles, the variations of HRS and LRS are 48 Ω and 37.35 Ω, respectively. The retention time is checked for more than 60 days, and the ROFF/RON ratio is 274.31. The bendability is carried out up to bending diameters < 10 mm, and FESEM is used for the morphological characteristics of the device. Conduction mechanism of the proposed device is supported by space charge-limited conduction (SCLC) which is explained by the log–log IV slope-fitting curve. The results insure that the F8BT:PVP composite-based resistive switching device is to be a potential candidate for the future flexible and low-power non-volatile resistive switching memory device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

F8BT:

Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]

PVP:

Polyvinylpyrrolidone

ITO:

Indium–tin–oxide

PET:

Polyethylene terephthalate

Ag:

Silver

THF:

Tetrahydrofuran

HRS:

High-resistance state

LRS:

Low-resistance state

V :

Voltage

IV :

Current–voltage

SCLC:

Space charge-limited conduction

References

  1. L.O. Chua, IEEE Trans. Circuit Theory (1971)

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature (2008)

  3. T. Raja, S. Mourad, in Proc. 5th IEEE Int. Symp. Electron. Des. Test Appl. DELTA 2010 (Ho Chi Minh City, Vietnam, 2010)

  4. Y. Abbas, M.R. Park, Q. Hu, T.S. Lee, H. Abbas, T.-S. Yoon, C.J. Kang, J. Nanosci. Nanotechnol. (2016)

  5. Y. Abbas, A.S. Sokolov, Y.R. Jeon, S. Kim, B. Ku, C. Choi, J. Alloys Compd. (2018)

  6. S. Ali, J. Bae, C.H. Lee, Curr. Appl. Phys. (2016)

  7. H. Abbas, Y. Abbas, S.N. Truong, K.S. Min, M.R. Park, J. Cho, T.S. Yoon, C.J. Kang, Semicond. Sci. Technol. (2017)

  8. Y. Abbas, Y.R. Jeon, A.S. Sokolov, S. Kim, B. Ku, C. Choi, Sci. Rep. (2018)

  9. S. Kim, Y. Abbas, Y.R. Jeon, A.S. Sokolov, B. Ku, C. Choi, Nanotechnology (2018)

  10. S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Org. Electron. Phys. Mater. Appl. 51 (2017)

  11. G. Hassan, S. Ali, J. Bae, C.H. Lee, Appl. Phys. A Mater. Sci. Process. 123 (2017)

  12. G. Hassan, J. Bae, C.H. Lee, J. Mater. Sci. Mater. Electron. 29 (2018)

  13. K.L. Wang, G. Liu, P.H. Chen, L. Pan, H.L. Tsai, Org. Electron. Phys. Mater. Appl. (2014)

  14. W. Hu, X. Chen, G. Wu, Y. Lin, N. Qin, D. Bao, Appl. Phys. Lett. (2012)

  15. S.G. Hu, S.Y. Wu, W.W. Jia, Q. Yu, L.J. Deng, Y.Q. Fu, Y. Liu, T.P. Chen, Nanosci. Nanotechnol. Lett. (2014)

  16. Y. Zhang, Z. Duan, R. Li, C.J. Ku, P. Reyes, A. Ashrafi, Y. Lu, J. Electron. Mater. (2012)

  17. S. Long, Q. Liu, H. Lv, Y. Li, Y. Wang, S. Zhang, W. Lian, K. Zhang, M. Wang, H. **e, M. Liu, Appl. Phys. A Mater. Sci. Process. (2011)

  18. K. Cherkaoui, S. Monaghan, M.A. Negara, M. Modreanu, P.K. Hurley, D. O’Connell, S. McDonnell, G. Hughes, S. Wright, R.C. Barklie, P. Bailey, T.C.Q. Noakes, J. Appl. Phys. (2008)

  19. K.A. Bertness, A.W. Sanders, D.M. Rourke, T.E. Harvey, A. Roshko, J.B. Schlager, N.A. Sanford, Adv. Funct. Mater. (2010)

  20. M.U. Khan, G. Hassan, M.A. Raza et al., Appl. Phys. A 124, 726 (2018)

    Article  ADS  Google Scholar 

  21. F. Qin, L. Ding, L. Zhang, F. Monticone, C.C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, C.W. Qiu, Sci. Adv. (2016)

  22. M. Ungureanu, R. Zazpe, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, L.E. Hueso, Adv. Mater. (2012)

  23. T.M. McManus, L.La Spada, Y. Hao, J. Opt. (UK) (2016)

  24. N.I. Zheludev, Y.S. Kivshar, Nat. Mater. (2012)

  25. L. La Spada, L. Vegni, Opt. Express (2017)

  26. Y. Lee, S.J. Kim, H. Park, B. Lee, Sensors (Switzerland) (2017)

  27. L. La Spada, L. Vegni, Materials 11, 603 (2018)

    Article  ADS  Google Scholar 

  28. A. Vakil, N. Engheta, Science (2011)

  29. L. La Spada, F. Bilotti, L. Vegni, Proc. Vol. 8306, Photon. Dev. Syst. V 83060I

  30. Y. Liu, Y. Hao, K. Li, S. Gong, IEEE Antennas Wirel. Propag. Lett. (2016)

  31. C. Langhammer, E.M. Larsson, B. Kasemo, I. Zorić, Nano Lett. (2010)

  32. N. Engheta, Science (2007)

  33. A.M. Shaltout, J. Kim, A. Boltasseva, V.M. Shalaev, A.V. Kildishev, Nat. Commun. (2018)

  34. G. Hassan, J. Bae, C.H. Lee, A. Hassan, J. Mater. Sci. Mater. Electron. 29 (2018)

  35. G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, C.H. Lee, Nanotechnology 28 (2017)

  36. S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Carbon N. Y. 105 (2016)

  37. Y. Chen, G. Liu, C. Wang, W. Zhang, R.W. Li, L. Wang, Mater. Horizons (2014)

  38. G. Baldi, S. Battistoni, G. Attolini, M. Bosi, C. Collini, S. Iannotta, L. Lorenzelli, R. Mosca, J.S. Ponraj, R. Verucchi, V. Erokhin, Semicond. Sci. Technol. (2014)

  39. D.B. Strukov, J.L. Borghetti, R.S. Williams, Small (2009)

  40. L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Sci. Rep. (2014)

  41. K.H. Chen, Y.C. Chen, Z.S. Chen, C.F. Yang, T.C. Chang, Appl. Phys. A Mater. Sci. Process. (2007)

  42. T. Dam, S.S. Jena, D.K. Pradhan, J. Phys. Chem. C (2018)

  43. R. Megha, S. Kotresh, Y.T. Ravikiran, C.H.V.V. Ramana, S.C. Vijaya, Kumari, S. Thomas, Compos. Interfaces (2017)

  44. A. Uthayakumar, A. Pandian, S. Mathiyalagan, A. Kumar, A.K. Keshri, S. Omar, K. Balani, S.B. Krishna Moorthy, J. Phys. Chem. C (2016)

  45. I. Bayrak Pehlivan, C.G. Granqvist, G.A. Niklasson, Electrochim. Acta (2014)

  46. A.B. Bodade, A.B. Bodade, H.G. Wankhade, G.N. Chaudhari, D.C. Kothari, Talanta (2012)

  47. S. Choudhary, R.J. Sengwa, Ionics (Kiel) (2011)

  48. D.U. Lee, E.K. Kim, W.J. Cho, Y.H. Kim, Appl. Phys. A Mater. Sci. Process. (2011)

  49. K. Gorshkov, T. Berzina, V. Erokhin, M.P. Fontana, Proced. Comput. Sci. (2011)

  50. S. Ali, J. Bae, C.H. Lee, K.H. Choi, Y.H. Doh, Org. Electron. Phys. Mater. Appl. (2015)

  51. N. Abilash, M., Sivapragash, Int. J. Appl. Innov. Eng. Manag. (2013)

  52. L. La Spada, R. Iovine, L. Vegni, Adv. Nanopart. (2012)

  53. M.N. Awais, M. Mustafa, M.N. Shehzad, U. Farooq, M.T. Hamayun, K.H. Choi, Micro Nano Lett. (2016)

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (NRF-2016R1A2B4015627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ho Bae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, G., Khan, M.U. & Bae, J. Solution-processed flexible non-volatile resistive switching device based on poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4, 8-diyl)]: polyvinylpyrrolidone composite and its conduction mechanism. Appl. Phys. A 125, 18 (2019). https://doi.org/10.1007/s00339-018-2307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2307-9

Navigation