Log in

Temperature-dependent properties of electrochemically grown CdS thin films from acetate precursor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cadmium sulphide (CdS) thin films have been successfully deposited on glass/fluorine-doped tin oxide (glass/FTO) from an aqueous electrolyte solution containing cadmium acetate Cd(CH3COO)2 and sodium thiosulphate (Na2S2O3) using electrodeposition technique. The deposition electrolytic bath temperature was varied at 45, 65 and 85 °C. Two electrode system was applied and the corresponding structural, optical, morphological and compositional properties of these thin films have been characterized using X-ray diffraction, UV–Vis spectrophotometry, scanning electron spectroscopy, scanning probe microscopy and energy dispersive X-ray spectroscopy, respectively. The effect of post growth annealing on the structural, optical and morphological quality of the thin films is also reported. The results show that, growth temperature has significant influence on structural and optical properties of the film properties. Increasing the electrolytic solution temperature resulted in slight improvement in crystallinity of CdS thin films in both as deposited and annealed conditions. Due to increase in bath temperature from 45 to 85 °C the energy band gap narrows down from 2.45 to 2.38 eV for as deposited films and 2.42–2.22 eV for annealed films. The increase in deposition temperature improves the atomic ratio of Cd to S. Similarly, the grain sizes of the films increase with increase in growth temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.G. Stanley, Massachusetts inst of tech Lexington Lincoln lab, (1967)

  2. F.A. Shirland, Adv. Energy Convers. 6, 201–221 (1966)

    Article  Google Scholar 

  3. R.R. Arya, T. Warminski, R. Beaulieu, M. Kwietniak, J.J. Loferski, W. Giriat, Sol. Energy Mater. 8, 471–481 (1983)

    Article  ADS  Google Scholar 

  4. S. Dennison, Electrochimica Acta 38, 2395–2403 (1993)

    Article  Google Scholar 

  5. A. Ashour, N. El-Kadry, S.A. Mahmoud, Thin Solid Films 269, 117–120 (1995)

    Article  ADS  Google Scholar 

  6. R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin, G. Cao, J. Phys. Chem. C 117, 26948–26956 (2013)

    Article  Google Scholar 

  7. O.K. Echendu, F.B. Dejene, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 28, 18865–18872 (2017)

    Article  Google Scholar 

  8. O.K. Echendu, I.M. Dharmadasa, Mater. Chem. Phys. 157, 39–44 (2015)

    Article  Google Scholar 

  9. L.L. Kazmerski, F.R. White, G.K. Morgan, Appl. Phys. Lett. 29, 268–270 (1976)

    Article  ADS  Google Scholar 

  10. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt. Res. Appl. 16, 235–239 (2008)

    Article  Google Scholar 

  11. X. Wang, S.S. Li, C.H. Huang, S. Rawal, J.M. Howard, V. Craciun, T.J. Anderson, O.D. Crisalle, Sol. Energy Mater. Sol. Cells 88, 65–73 (2005)

    Article  Google Scholar 

  12. X. Wang, S.S. Li, W.K. Kim, S. Yoon, V. Craciun, J.M. Howard, S. Easwaran, O. Manasreh, O.D. Crisalle, T.J. Anderson, Sol. Energy Mater. Sol. Cells 90, 2855–2866 (2006)

    Article  Google Scholar 

  13. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, J. Alloys Compd. 436, 305 (2010)

    Article  Google Scholar 

  14. W.G.C. Kumarage, V.A. L.B.D.R.P Wijesundara, C.P. Seneviratne, B.S. Jayalath, Dassanayake, Procedia Eng. 139, 64 (2016)

    Article  Google Scholar 

  15. O.K. Echendu, U.S. Mbamara, K.B. Okeoma, C. Iroegbu, C.A. Madu, I.C. Ndukwe, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 27, 10182 (2016)

    Article  Google Scholar 

  16. N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 2429 (2015)

    Article  Google Scholar 

  17. P. Boieriu, R. Sporken, A. Adriaens, Y. **n, N.D. Browning, S. Sivananthan, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 161–163, 975 (2000)

    Article  ADS  Google Scholar 

  18. E.W. Jones, V. Barrioz, S.J.C. Irvine, D. Lamb, Thin Solid Films 517, 2226 (2009)

    Article  ADS  Google Scholar 

  19. V. Krishnakumar, K. Ramamurthi, A. Klein, W. Jaegermann, Thin Solid Films 517, 2558 (2009)

    Article  ADS  Google Scholar 

  20. M. Saglam, A. Ates, B. Guzeldir, A. Astam, M.A. Yildirim, J. Alloys Compd. 484, 570 (2009)

    Article  Google Scholar 

  21. P.J. Sebastian, M.E. Calixto, Porous, Thin Solid Films 360, 128–132 (2002)

    Article  Google Scholar 

  22. A.A. Ziabari, F.E. Ghodsi, Growth, Sol. Energy Mater. Sol. Cells 105, 249–262 (2012)

    Article  Google Scholar 

  23. S. Bonilla, E.A. Dalchiele, Thin Solid Films 204, 397 (1991)

    Article  ADS  Google Scholar 

  24. B. Ullrich, H. Sakai, Y. Segawa, Appl. Phys. Lett. 80, 356–358 (2002)

    Article  ADS  Google Scholar 

  25. M. Rusu, T. Glatzel, A. Neisser, C.A. Kaufmann, S. Sadewasser, M.C. Lux-, Steiner, Appl. Phys. Lett. 88, 143510 (2006)

    Article  ADS  Google Scholar 

  26. I.M. Dharmadasa, O.K. Echendu, Encycl. Appl. Electrochem. (2012) 680–691

  27. J. Nishino, S. Chatani, Y. Uotani, Y. Nosaka, J. Electroanal. Chem. 473, 217–222 (1999)

    Article  Google Scholar 

  28. G. Mustafa, M.R.I. Chowdhury, D.K. Saha, S. Hussain, O. Islam, Dhaka Univ. J. Sci. 60, 283 (2012)

    Article  Google Scholar 

  29. V. Singh, P. Chauhan, J. Phys. Chem. 70, 1074–1079 (2009)

    Google Scholar 

  30. K.G. Rao, V.K. Ashith, J. Phys. Chem. 77, 14–22 (2015)

    Google Scholar 

  31. O. Zelaya-Angel1, R. Lozada-Morales, Phys. Rev. B 62, 13064 (2000)

    Article  ADS  Google Scholar 

  32. L. Wenyi, C. Xun, C. Qiulong, Z. Zhibin, Mater. Lett. 59, 1–5 (2005)

    Article  Google Scholar 

  33. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, J. Alloys Compd. 493, 305–308 (2010)

    Article  Google Scholar 

  34. A. Mukherjee, B. Satpati, S.R. Bhattacharyya, R. Ghosh, P. Mitra, Phys. E 65, 51–55 (2015)

    Article  Google Scholar 

  35. M.J. Kim, H.T. Kim, J.K. Kang, D.H. Kim, D.H. Lee, S.H. Lee, S.H. Sohn, Mol. Cryst. Liq. Cryst. 532, 21 (2010)

    Google Scholar 

  36. R.R.L. De Oliveira, D.A.C. Albuquerque, T.G.S. Cruz, F.M. Yamaji, F.L. Leite, http://www.intechopen.com. InTech (2012)

  37. J. Aguilar-Hernandez, J. Saatre-Hernandez, N. **mello-Quiebras, R. Mendoza-, O. Perez, G. Vigil-Galan, Contreras-Garcia, Thin Solid Films 143, 511–512 (2006)

    Google Scholar 

  38. K. Ravichandran, P. Philominathan, Appl. Surf. Sci. 255, 5736–5741 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of the Free State, Research Directorate and the National Research Foundation, South Africa for funding the research that led to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Werta.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werta, S.Z., Echendu, O.K., Dejene, F.B. et al. Temperature-dependent properties of electrochemically grown CdS thin films from acetate precursor. Appl. Phys. A 124, 576 (2018). https://doi.org/10.1007/s00339-018-1996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1996-4

Navigation