Log in

Ion dynamics of a laser produced aluminium plasma at different ambient pressures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Plasma is generated by pulsed laser ablation of an Aluminium target using 1064 nm, 7 ns Nd:YAG laser pulses. The spatial and temporal evolution of the whole plasma plume, as well as that of the ionic (Al2+) component present in the plume, are investigated using spectrally resolved time-gated imaging. The influence of ambient gas pressure on the expansion dynamics of Al2+ is studied in particular. In vacuum (10−5 Torr, 10−2 Torr) the whole plume expands adiabatically and diffuses into the ambient. For higher pressures in the range of 1–10 Torr plume expansion is in accordance with the shock wave model, while at 760 Torr the expansion follows the drag model. On the other hand, the expansion dynamics of the Al2+ component, measured by introducing a band pass optical filter in the detection system, fits to the shock wave model for the entire pressure range of 10−2 Torr to 760 Torr. The expansion velocities of the whole plume and the Al2+ component have been measured in vacuum. These dynamics studies are of potential importance for applications such as laser-driven plasma accelerators, ion acceleration, pulsed laser deposition, micromachining, laser-assisted mass spectrometry, ion implantation, and light source generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, Appl. Phys. Lett. 99, 131506 (2011)

    Article  ADS  Google Scholar 

  2. H. Nakajima, S. Tokita, S. Inoue, M. Hashida, S. Sakabe, Phys. Rev. Lett. 110, 155001 (2013)

    Article  ADS  Google Scholar 

  3. S. Wicklein, A. Sambri, S. Amoruso, X. Wang, R. Bruzzese, A. Koehl, R. Dittmann, Appl. Phys. Lett. 101, 131601 (2012)

    Article  ADS  Google Scholar 

  4. A. Perrone, L. Cultrera, A. Lorusso, B. Maiolo, F. Strafella, J. Appl. Phys 113, 26102 (2013)

    Article  Google Scholar 

  5. R. Kelly, A. Miotello, D.B. Chrisey, G.K. Hubler, D.B. By, G.K. Chrisey, Hubler (Wiley, New York, 1994), p 55

  6. L. Torrisia, F. Caridi, L. Giuffrida, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact Mater. Atoms 268, 2285 (2010)

    Article  ADS  Google Scholar 

  7. O. Balki, H.E. Elsayed-Ali, Rev. Sci. Instrum. 87, 113304 (2016)

    Article  ADS  Google Scholar 

  8. M.H.A. Shaim, F.G. Wilson, H.E. Elsayed-Ali, J. Appl. Phys. 121, 185901 (2017)

    Article  ADS  Google Scholar 

  9. J. Wolowski, J. Badziak, F.P. Boody, H. Hora, V. Hnatowicz, K. Jungwirth, J. Kr$aacute$sa, L. L$aacute$ska, P. Parys, V. Pecina, M. Pfeifer, K. Rohlena, L. Ry$cacute$, J. Ullschmied, E. Woryna, Plasma Phys. Control. Fusion 44, 316 (2002)

    Article  Google Scholar 

  10. K.K. Anoop, M.P. Polek, R. Bruzzese, S. Amoruso, S.S. Harilal, J. Appl. Phys 117, 83108 (2015)

    Article  Google Scholar 

  11. K.K. Anoop, X. Ni, X. Wang, S. Amoruso, R. Bruzzese, Laser Phys 24, 105902 (2014)

    Article  ADS  Google Scholar 

  12. J.A. Aguilera, C. Aragón, Appl. Phys. A Mater. Sci. Process 69, S475 (1999)

    Article  ADS  Google Scholar 

  13. N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok, Phys. Rev. E 62, 5624 (2000)

    Article  ADS  Google Scholar 

  14. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Phys. D. Appl. Phys 35, 2935 (2002)

    Article  Google Scholar 

  15. N.M. Shaikh, S. Hafeez, M.A. Kalyar, R. Ali, M.A. Baig, J. Appl. Phys 104, 103108 (2008)

    Article  ADS  Google Scholar 

  16. S. Mahmood, R.S. Rawat, M.S.B. Darby, M. Zakaullah, S.V. Springham, T.L. Tan, P. Lee, Phys. Plasmas 17, 103105 (2010)

    Article  ADS  Google Scholar 

  17. Ş Yalçın, Y. Tsui, R. Fedosejevs, J. Anal. At. (2004)

  18. P.K. Diwakar, S.S. Harilal, M.C. Phillips, A. Hassanein, J. Appl. Phys 118, 43305 (2015)

    Article  Google Scholar 

  19. K. Saenger, Process. Adv. Mater. (1993)

  20. J. Gonzalo, C.N. Afonso, I. Madariaga, J. Appl. Phys. 81, 951 (1997)

    Article  ADS  Google Scholar 

  21. W.K.A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, M. Maeda, J. Appl. Phys. 74, 7510 (1993)

    Article  ADS  Google Scholar 

  22. J.F. Kielkopf, Phys. Rev. E 52, 2013 (1995)

    Article  ADS  Google Scholar 

  23. J. Gonzalo, F. Vega, C.N. Afonso, J. Appl. Phys. 77, 6588 (1995)

    Article  ADS  Google Scholar 

  24. T.E. Itina, J. Hermann, P. Delaporte, M. Sentis, Phys. Rev. E 66, 66406 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reji Philip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, P., Shashikala, H.D. & Philip, R. Ion dynamics of a laser produced aluminium plasma at different ambient pressures. Appl. Phys. A 124, 26 (2018). https://doi.org/10.1007/s00339-017-1417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1417-0

Navigation