Log in

Thermoelectric and magnetic properties of Yb2MgSi2 prepared by spark plasma sintering method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An intermediate-valence compound, Yb2MgSi2, has been prepared using a spark plasma sintering method. The magnetic susceptibility and thermoelectric properties of Yb2MgSi2 are measured in the temperature range from 5 to 300 K. From the magnetic susceptibility results, Yb valence of the Yb2MgSi2 is evaluated. As compared with YbAl3, which is one of the promising thermoelectric materials that can be used at low temperatures, Yb2MgSi2 exhibits a lower absolute value of Seebeck coefficient, higher electrical resistivity, and lower thermal conductivity over the measured temperature range. A maximum dimensionless figure of merit, ZT, of 0.0018 is achieved at around 200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.J. van Daal, P.B. Van Aken, K.H.J. Buschow, The Seebeck coefficient of YbAl2 and YbA3. Phys. Lett. A 49, 246 (1974)

    Article  ADS  Google Scholar 

  2. D.M. Rowe, G. Min, L. Kuznestsov, Electrical resistivity and Seebeck coefficient of hot-pressed YbAl3 over the temperature range 150–700 K. Philos. Mag. Lett. 77, 105 (1998)

    Article  Google Scholar 

  3. D.M. Rowe, V.L. Kuznetsov, L.A. Kuznetsova, G. Min, Electrical and thermal transport properties of intermediate-valence YbAl3. J. Phys. D Appl. Phys. 35, 2183 (2002)

    Article  ADS  Google Scholar 

  4. S. Katsuyama, M. Suzuki, T. Tanaka, Effect of addition of B or C on thermoelectric properties of heavy fermion intermetallic compound YbAl3. J. Alloys Comp. 513, 189 (2012)

    Article  Google Scholar 

  5. G.J. Lehr, D.T. Morelli, Thermoelectric properties of Yb1−x (Er, Lu)xAl3 solid solutions. J. Electr. Mater. 42, 1697 (2013)

    Article  ADS  Google Scholar 

  6. G.J. Lehr, D.T. Morelli, Synthesis, crystal structure, and thermoelectric properties of the YbAl3–ScAl3 solid solution. Intermetallics 32, 225 (2013)

    Article  Google Scholar 

  7. J.Q. Li, X.Y. Liu, Y. Li, S.H. Song, F.S. Liu, W.Q. Ao, Influence of Sn substitution on the thermoelectric properties in YbAl3. J. Alloys Comp. 600, 8 (2014)

    Article  Google Scholar 

  8. V.H. Tran, W. Miiller, A. Kowalczyk, T. Toliński, G. Chełkowska, Intermediate valence behaviour of Yb in a new intermetallic compound YbNi0.8Al4.2. J. Phys. Condens. Matter 18, 10353 (2006)

    Article  ADS  Google Scholar 

  9. A. Chamoire, F. Gascoin, C. Estournès, T. Caillatc, J.-C. Tédenaca, High-temperature transport properties of complex antimonides with anti-Th 3P4 structure. Dalton Trans. 39, 1118 (2010)

    Article  Google Scholar 

  10. G.J. Lehr, D.T. Morelli, H. **, J.P. Heremans, Enhanced thermoelectric power factor in Yb1−x Sc x Al2 alloys using chemical pressure tuning of the Yb valence. J. Appl. Phys. 114, 223712 (2013)

    Article  ADS  Google Scholar 

  11. G.J. Lehr, D.T. Morelli, H. **, J.P. Heremans, YbCu2Si2-LaCu2Si2 Solid Solutions with Enhanced Thermoelectric Power Factors. J. Electr. Mater. 44, 1663 (2015)

    Article  ADS  Google Scholar 

  12. V.N. Nikiforov, V.V. Pryadun, A.V. Morozkin, V.Y. Irkhin, Anomalies of transport properties in antiferromagnetic YbMn2Sb2 compound. Phys. Lett. A 378, 1425 (2014)

    Article  ADS  Google Scholar 

  13. T.A. Zlatić, A.C. Costi, B.R. Hewson, Coles, Thermoelectric power of concentrated Kondo systems. Phys. Rev. B 48, 16152 (1993)

    Article  ADS  Google Scholar 

  14. V. Zlatić, R. Monnier, J.K. Freericks, K.W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems. Phys. Rev. B 76, 085122 (2007)

    Article  ADS  Google Scholar 

  15. T. Saso, K. Urasaki, Seebeck Coefficient of Kondo Insulators. J. Phys. Soc. Jpn. Suppl. 71, 288 (2002)

    Article  ADS  Google Scholar 

  16. T. Saso, H. Harima, Formation mechanism of hybridization gap in kondo insulators based on a realistic band model and application to YbB12. J. Phys. Soc. Jpn. 72, 1131 (2003)

    Article  ADS  Google Scholar 

  17. A. Iandelli, A. Palenzona, Magnetic susceptibility and expansion coefficient of the intermetallic compounds YbAl2 and YbAl3. J. Less Common Met. 29, 293 (1972)

    Article  Google Scholar 

  18. N. Tsujii, T. Mori, High thermoelectric power factor in a carrier-doped magnetic semiconductor CuFeS2. Appl. Phys. Express 6, 043001 (2013)

    Article  ADS  Google Scholar 

  19. R. Ang, A.U. Khan, N. Tsujii, K. Takai, R. Nakamura, T. Mori, Thermoelectricity generation and electron-magnon scattering in a natural Chalcopyrite mineral from a deep-sea hydrothermal vent. Angew. Chem. Int. Ed. 54, 12909 (2015)

    Article  Google Scholar 

  20. R. Kraft, R. Pottgen, Syntheses and crystal structure of the ternary silicides RE 2Si2Mg (RE = Y, La–Nd, Sm, Gd–Lu) and structure refinement of Dy5Si3. Monatsh. Chem. 136, 1707 (2005)

    Article  Google Scholar 

  21. Q. **e, C. Kubata, M. Wörle, R. Nesper, TtTt (Tt = Si, Ge) dumb-bell structures at different valence electron concentrations: Ln 2MgSi2 (Ln = La, Ce), Yb2Li0.5Ge2, and Yb1.75Mg0.75Si2. Z. Anorg. Allg. Chem. 634, 2469 (2008)

    Article  Google Scholar 

  22. K.V. Shah, P. Bonville, P. Manfrinetti, F. Wrubl, S.K. Dhar, The Yb2Al1−x Mg x Si2 series from a spin fluctuation (x = 0) to a magnetically ordered ground state (x = 1). J. Phys. Condens. Matter 21, 176001 (2009)

    Article  ADS  Google Scholar 

  23. A. Sussardi, T. Tanaka, A.U. Khan, L. Schlapbach, T. Mori, Enhanced thermoelectric properties of samarium boride. J. Mater. 1, 196 (2015)

    Google Scholar 

  24. J.M. Lawrence, G.H. Kwei, P.C. Canfield, J.G. DeWitt, A.C. Lawson, L III x-ray absorption in Yb compounds: temperature dependence of the valence. Phys. Rev. B 49, 1627 (1994)

    Article  ADS  Google Scholar 

  25. L. Moreschini, C. Dallera, J.J. Joyce, J.L. Sarrao, E.D. Bauer, V. Fritsch, S. Bobev, E. Carpene, S. Huotari, G. Vankó, G. Monaco, P. Lacovig, G. Panaccione, A. Fondacaro, G. Paolicelli, P. Torelli, M. Grioni, Comparison of bulk-sensitive spectroscopic probes of Yb valence in Kondo systems. Phys. Rev. B 75, 035113 (2007)

    Article  ADS  Google Scholar 

  26. S. Suga, A. Sekiyama, S. Imada, A. Shigemoto, A. Yamasaki, M. Tsunekawa, C. Dallera, L. Braicovich, T.-L. Lee, O. Sasaki, T. Ebihara, Y. Ōnuki, Kondo lattice effects of YbAl3 suggested by temperature dependence of high-accuracy high-energy photoelectron spectroscopy. J. Phys. Soc. Jpn. 74, 2880 (2005)

    Article  ADS  Google Scholar 

  27. V. Petricek, M. Dusek, L. Palatinus, JANA2006 The crystallographic computing system (Institute of Physics, Praha, 2006)

    Google Scholar 

  28. B.S. Shastry, B. Sutherland, Exact ground state of a quantum mechanical antiferromagnet. Physica B+C 108, 1069 (1981)

    Article  ADS  Google Scholar 

  29. B.C. Sales, D.K. Wohlleben, Susceptibility of Interconfiguration-Fluctuation Compounds. Phys. Rev. Lett. 35, 1240 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the Grant-in-Aid for JSPS Fellows (Grant No. 4789), Supporting Industry project of Ministry of Economy, Trade, and Industry of Japan, and the Grants-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant No. 25289222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubouchi, M., Hayashi, K. & Miyazaki, Y. Thermoelectric and magnetic properties of Yb2MgSi2 prepared by spark plasma sintering method. Appl. Phys. A 122, 769 (2016). https://doi.org/10.1007/s00339-016-0300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0300-8

Keywords

Navigation