Log in

Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mechanically stable nickel (Ni) nanowires array and nanowires network were synthesized by pulse electrochemical deposition using 2D and 3D porous anodic alumina (PAA) templates. The structures and morphologies of as-prepared films were characterized by X-ray diffraction and scanning electron microscopy, respectively. The grown Ni nanowire using 3D PAA revealed more strength and larger surface area than has grown Ni use 2D PAA template. The prepared nanowires have a face-centered cubic crystal structure with average grain size 15 nm, and the preferred orientation of the nucleation of the nanowires is (111). The diameter of the nanowires is about 50–70 nm with length 3 µm. The resulting 3D Ni nanowire lattice, which provides enhanced mechanical stability and an increased surface area, benefits energy storage and many other applications which utilize the large surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.V. Kama, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106(32), 7729–7744 (2002)

    Article  Google Scholar 

  2. F. Hekmat, B. Sohrabi, M.S. Rahmanifar, Growth of the cobalt nanowires using AC electrochemical deposition on anodized aluminum oxide templates. J. Nanostruct. Chem. 4(2), 1–4 (2014)

    Article  Google Scholar 

  3. J. Xu, K. Wang, Pulsed electrodeposition of monocrystalline Ni nanowire array and its magnetic properties. Appl. Surf. Sci. 254(20), 6623–6627 (2008)

    Article  ADS  Google Scholar 

  4. A. Ganguly, S. Chattopadhyay, K.H. Chen, L.C. Chen, Production and storage of energy with one-dimensional semiconductor nanostructures. Crit. Rev. Solid State Mater. Sci. 39(2), 109–153 (2014)

    Article  ADS  Google Scholar 

  5. G. Bronstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, S. Christiansen, Optical properties of individual silicon nanowires for photonic devices. ACS Nano 4(12), 7113–7122 (2010)

    Article  Google Scholar 

  6. M. Alexe, D. Hesse, One-dimensional ferroelectrics: nanowires and nanotubes. Ferroelectrics 433(1), 53–64 (2012)

    Article  Google Scholar 

  7. S.P. Chiu, Y.H. Lin, J.J. Lin, Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology 20(1), 015203 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Sarkar, G.G. Khan, A. Basumallick, Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template. Bull. Mater. Sci. 30(3), 271–290 (2007)

    Article  Google Scholar 

  9. V.M. Prida, J. García, L. Iglesias, V. Vega, D. Görlitz, K. Nielsch, E.D. Barriga-Castro, R. Mendoza-Reséndez, A. Ponce, C. Luna, Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale Res. Lett. 8(1), 1–7 (2013)

    Article  Google Scholar 

  10. X. Huang, L. Li, X. Luo, X. Zhu, G. Li, Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays. J. Phys. Chem. C 112(5), 1468–1472 (2008)

    Article  Google Scholar 

  11. Y. Chang, P. Wang, Q. Sun, Y. Wang, Y. Long, Room temperature ferromagnetism of (Mn, Fe) codoped ZnO nanowires synthesized by chemical vapor deposition. J. Nanomater. 2011, 1–6 (2011)

    Google Scholar 

  12. D.H. Reich, M. Tanase, A. Hultgren, L.A. Bauer, C.H. Chen, G.J. Meyer, Biological applications of multifunctional magnetic nanowires. J. Appl. Phys. 93(10), 7275–7280 (2003)

    Article  ADS  Google Scholar 

  13. Q. Guo, L. Qin, J. Zhao, Y. Hao, Z. Yan, F. Mu, P. Chen, Structural analysis and angle-dependent magnetic properties of Y-branched Ni nanowires. Phys. E 44(10), 1988–1991 (2012)

    Article  Google Scholar 

  14. O. Jessensky, F. Müller, U. Gösele, Self‐organized formation of hexagonal pore structures in anodic alumina. J. Electrochem. Soc. 145(11), 3735–3740 (1998)

    Article  Google Scholar 

  15. W.J. Stępniowski, W. Florkiewicz, M. Michalska-Domańska, M. Norek, T. Czujko, A comparative study of electrochemical barrier layer thinning for anodic aluminum oxide grown on technical purity aluminum. J. Electroanal. Chem. 741, 80–86 (2015)

    Article  Google Scholar 

  16. A.M. Abd-Elnaiem, A.M. Mebed, W.A. El-Said, M.A. Abdel-Rahim, Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage. Thin Solid Films 570, 49–56 (2014)

    Article  ADS  Google Scholar 

  17. J. Vanpaemel, A.M. Abd-Elnaiem, S.D. Gendt, P.M. Vereecken, The formation mechanism of 3D porous anodized aluminum oxide templates from an aluminum film with copper impurities. J. Phys. Chem. C 119(4), 2105–2112 (2015)

    Article  Google Scholar 

  18. A.M. Abd-Elnaiem, A.M. Mebed, A. Gaber, M.A. Abdel-Rahim, Tailoring the porous nanostructure of porous anodic alumina membrane with the impurity control. J. Alloys Compd. 659, 270–278 (2016)

    Article  Google Scholar 

  19. P. Banerjee, I. Perez, L. Henn-Lecordier, S.B. Lee, G.W. Rubloff, Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nat. Nanotechnol. 4(5), 292–296 (2009)

    Article  ADS  Google Scholar 

  20. A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9(3), 1002–1006 (2009)

    Article  ADS  Google Scholar 

  21. S. Wen, J.A. Szpunar, Direct electrodeposition of highly ordered magnetic nickel nanowires on silicon wafer. Micro Nano Lett. IET 1(2), 89–93 (2006)

    Article  Google Scholar 

  22. Y. Liang, C. Zhen, D. Zou, D. Xu, Preparation of free-standing nanowire arrays on conductive substrates. J. Am. Chem. Soc. 126(50), 16338–16339 (2004)

    Article  Google Scholar 

  23. T.M. Whitney, P.C. Searson, J.S. Jiang, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires. Science 261(5126), 1316–1319 (1993)

    Article  ADS  Google Scholar 

  24. L. Bai, F. Yuan, Q. Tang, Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route. Mater. Lett. 62(15), 2267–2270 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. P. M. Vereecken (imec-Belgium) for his support of the experimental work. The present work is partially supported by Aljouf University under Grant Number 306/35; the authors are very grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Abd-Elnaiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebed, A.M., Abd-Elnaiem, A.M. & Al-Hosiny, N.M. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates. Appl. Phys. A 122, 565 (2016). https://doi.org/10.1007/s00339-016-0099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0099-3

Keywords

Navigation