Log in

The Derivative Nonlinear Schrödinger Equation with Zero/Nonzero Boundary Conditions: Inverse Scattering Transforms and N-Double-Pole Solutions

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we report a rigorous theory of the inverse scattering transforms (ISTs) for the derivative nonlinear Schrödinger (DNLS) equation with both zero boundary conditions (ZBCs) and nonzero boundary conditions (NZBCs) at infinity and double zeros of analytical scattering coefficients. The scattering theories for both ZBCs and NZBCs are addressed. The direct scattering problem establishes the analyticity, symmetries, and asymptotic behaviors of the Jost solutions and scattering matrix, and properties of discrete spectra. The inverse scattering problems are formulated and solved with the aid of the matrix Riemann–Hilbert problems, and the reconstruction formulae, trace formulae and theta conditions are also posed. In particular, the IST with NZBCs at infinity is proposed by a suitable uniformization variable, which allows the scattering problem to be solved on a standard complex plane instead of a two-sheeted Riemann surface. The reflectionless potentials with double poles for the ZBCs and NZBCs are both carried out explicitly by means of determinants. Some representative semi-rational bright–bright soliton, dark–bright soliton, and breather–breather solutions are examined in detail. These results and idea can also be extended to other types of DNLS equations such as the Chen–Lee–Liu-type DNLS equation, Gerdjikov–Ivanov-type DNLS equation, and Kundu-type DNLS equation and will be useful to further explore and apply the related nonlinear wave phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31(2), 125–127 (1973)

    MathSciNet  MATH  Google Scholar 

  • Anderson, D., Lisak, M.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 1393 (1983)

    Google Scholar 

  • Biondini, G., Kovačič, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 031506 (2014)

    MathSciNet  MATH  Google Scholar 

  • Biondini, G., Mantzavinos, D.: Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions at infinity and asymptotic stage of modulational instability. Commun. Pure Appl. Math. 70, 2300–2365 (2017)

    MATH  Google Scholar 

  • Chen, X.-J., Lam, W.K.: Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys. Rev. E 69(6), 066604 (2004)

    MathSciNet  Google Scholar 

  • Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490 (1979)

    MathSciNet  MATH  Google Scholar 

  • Chen, X.-J., Yang, J., Lam, W.K.: N-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. J. Phys. A: Math. Gen. 39(13), 3263 (2006)

    MATH  Google Scholar 

  • Clarkson, P.A., Cosgrove, C.M.: Painlevé analysis of the non-linear Schrödinger family of equations. J. Phys. A 20, 2003 (1987)

    MathSciNet  MATH  Google Scholar 

  • Daniel, M., Veerakumar, V.: Propagation of electromagnetic soliton in antiferromagnetic medium. Phys. Lett. A 302(2–3), 77–86 (2002)

    MATH  Google Scholar 

  • Deift, P.A., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137, 295–368 (1993)

    MathSciNet  MATH  Google Scholar 

  • Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions. Stud. Appl. Math. 131, 1–40 (2013)

    MathSciNet  MATH  Google Scholar 

  • Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions. J. Math. Phys. 55, 101505 (2014)

    MathSciNet  MATH  Google Scholar 

  • Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    MATH  Google Scholar 

  • Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967)

    MATH  Google Scholar 

  • Gerdjikov, V.S., Ivanov, M.I.: The quadratic bundle of general form and the nonlinear evolution equations. I. Expansions over the “squared” solutions are generalized Fourier transforms. Bulg. J. Phys. 10, 13–26 (1983)

    Google Scholar 

  • Gerdjikov, V.S., Ivanov, M.I.: The quadratic bundle of general form and the nonlinear evolution equations. II. Hierarchies of Hamiltonian structures. Bulg. J. Phys. 10, 130–143 (1983)

    Google Scholar 

  • Ichikawa, Y.H., Konno, K., Wadati, M., Sanuki, H.: Spiky soliton in circular polarized Alfvén wave. J. Phys. Soc. Jpn. 48, 279 (1980)

    Google Scholar 

  • Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1526 (1995)

    MATH  Google Scholar 

  • Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)

    MATH  Google Scholar 

  • Kawata, T., Inoue, H.: Exact solutions of the derivative nonlinear Schrödinger equation under the nonvanishing conditions. J. Phys. Soc. Jpn. 44(6), 1968–1976 (1978)

    MATH  Google Scholar 

  • Kawata, T., Sakai, Jun-ichi, Kobayashi, N.: Inverse method for the mixed nonlinear Schrödinger equation and soliton solutions. J. Phys. Soc. Jpn. 48, 1371 (1980)

    MATH  Google Scholar 

  • Kitaev, A.V., Vartanian, A.H.: Asymptotics of solutions to the modified nonlinear Schrödinger equation: solution on a nonvanishing continuous background. SIAM J. Math. Anal. 30, 787–832 (1999)

    MathSciNet  MATH  Google Scholar 

  • Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433 (1984)

    MathSciNet  Google Scholar 

  • Kundu, A.: Exact solutions to higher-order nonlinear equations through gauge transformation. Physica D 25, 399–406 (1987)

    MathSciNet  MATH  Google Scholar 

  • Lakshmanan, M.: Continuum spin system as an exactly solvable dynamical system. Phys. Lett. A 60, 53 (1977)

    Google Scholar 

  • Lamb Jr., G.L.: Solitons and the motion of helical curves. Phys. Rev. Lett. 37, 235 (1976)

    MathSciNet  Google Scholar 

  • Lashkin, V.: N-soliton solutions and perturbation theory for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. J. Phys. A: Math. Theor. 40(23), 6119 (2007)

    MathSciNet  MATH  Google Scholar 

  • Liu, J., Perry, P.A., Sulem, C.: Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering. Commun. Partial Differ. Equ. 41, 1692 (2016)

    MATH  Google Scholar 

  • Mio, K., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41(1), 265–271 (1976)

    MATH  Google Scholar 

  • Mjølhus, E., Hada, T.: In: Hada, T., Matsumoto, H. (eds.) Nonlinear Waves and Chaos in Space Plasmas, pp. 121–169. Terrapub, Tokio (1997)

  • Mjølhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16(3), 321–334 (1976)

    Google Scholar 

  • Mjølhus, E.: Nonlinear Alfvén waves and the DNLS equation: oblique aspects. Phys. Scr. 40(2), 227 (1989)

    MathSciNet  Google Scholar 

  • Nakata, I.: Weak nonlinear electromagnetic waves in a ferromagnet propagating parallel to an external magnetic field. J. Phys. Soc. Jpn. 60(11), 3976–3977 (1991)

    MathSciNet  Google Scholar 

  • Nakata, I., Ono, H., Yosida, M.: Solitons in a dielectric medium under an external magnetic field. Prog. Theor. Phys. 90(3), 739–742 (1993)

    Google Scholar 

  • Ohkuma, K., Ichikawa, Y.H., Abe, Y.: Soliton propagation along optical fibers. Opt. Lett. 12, 516 (1987)

    Google Scholar 

  • Pichler, M., Biondini, G.: On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles. IMA J. Appl. Math. 82, 131–151 (2017)

    MathSciNet  MATH  Google Scholar 

  • Prinari, B.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition. Cont. Math. 651, 157–194 (2015)

    MATH  Google Scholar 

  • Prinari, B., Ablowitz, M.J., Biondini, G.: Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions. J. Math. Phys. 47, 063508 (2006)

    MathSciNet  MATH  Google Scholar 

  • Rogister, A.: Parallel propagation of nonlinear low-frequency waves in high-\(\beta \) plasma. Phys. Fluids 14(12), 2733–2739 (1971)

    Google Scholar 

  • Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62 (1972)

    MathSciNet  Google Scholar 

  • Tzoar, N., Jain, M.: Self-phase modulation in long-geometry optical waveguides. Phys. Rev. A 23, 1266 (1981)

    Google Scholar 

  • Wadati, M., Sogo, K.: Gauge transformations in soliton theory. J. Phys. Soc. Jpn. 52, 394–398 (1983)

    MathSciNet  Google Scholar 

  • Wadati, M., Konno, K., Ichikawa, Y.-H.: A generalization of inverse scattering method. J. Phys. Soc. Jpn. 46, 1965 (1979)

    MathSciNet  MATH  Google Scholar 

  • Xu, J., Fan, E., Chen, Y.: Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value. Math. Phys. Anal. Geometry 16, 253–288 (2013)

    MathSciNet  MATH  Google Scholar 

  • Zhang, G., Yan, Z.: Focusing and defocusing mKdV equations with nonzero boundary conditions: inverse scattering transforms and soliton interactions. Physica D 410, 132521 (2020). ar**v:1810.12150

    MathSciNet  Google Scholar 

  • Zhang, G., Yan, Z.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Physica D 402, 132170 (2020). ar**v:1810.12143

    MathSciNet  Google Scholar 

  • Zhou, X.: Direct and inverse scattering transforms with arbitrary spectral singularities. Commun. Pure Appl. Math. 42, 895–938 (1989)

    MathSciNet  MATH  Google Scholar 

  • Zhou, G.: A newly revised inverse scattering transform for \(\rm DNLS^+\) equation under nonvanishing boundary condition. Wuhan Univ. J. Nat. Sci. 17(2), 144–150 (2012)

    MathSciNet  Google Scholar 

  • Zhou, G.-Q., Huang, N.-N.: An N-soliton solution to the DNLS equation based on revised inverse scattering transform. J. Phys. A: Math. Theor. 40(45), 13607 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions. This work was supported by the NSFC under Grants Nos. 11925108 and 11731014, and CAS Interdisciplinary Innovation Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenya Yan.

Additional information

Communicated by Arnd Scheel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper was originally announced on 6 December 2018 [ar**v:1812.02387].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yan, Z. The Derivative Nonlinear Schrödinger Equation with Zero/Nonzero Boundary Conditions: Inverse Scattering Transforms and N-Double-Pole Solutions. J Nonlinear Sci 30, 3089–3127 (2020). https://doi.org/10.1007/s00332-020-09645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09645-6

Keywords

Mathematics Subject Classification

Navigation