Log in

MpSaci is a widespread gypsy-Ty3 retrotransposon highly represented by non-autonomous copies in the Moniliophthora perniciosa genome

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Transposons are an important source of genetic variation. The phytopathogen Moniliophthora perniciosa shows high level of variability but little is known about the role of class I elements in sha** its genome. In this work, we aimed the characterization of a new gypsy/Ty3 retrotransposon species, named MpSaci, in the M. perniciosa genome. These elements are largely variable in size, ranging from 4 to 15 kb, and harbor direct long terminal repeats (LTRs) with varying degrees of similarity. Approximately, all of the copies are non-autonomous as shifts in the reading frame and stop codons were detected. Only two elements (MpSaci6 and MpSaci9) code for GAG and POL proteins that possess functional domains. Conserved domains that are typically not found in retrotransposons were detected and could potentially impact the expression of neighbor genes. Solo LTRs and several LARDs (large retrotransposon derivative) were detected. Unusual elements containing small sequences with or without interruptions that are similar to gag or different pol domains and presenting LTRs with different levels of similarities were identified. Methylation was observed in MpSaci reverse transcriptase sequences. Distribution analysis indicates that MpSaci elements are present in high copy number in the genomes of C-, S- and L-biotypes of M. perniciosa. In addition, C-biotype isolates originating from the state of Bahia have fragments in common with isolates from the Amazon region and two hybridization profiles related to two chromosomal groups. RT-PCR analysis reveals that the gag gene is constitutively expressed and that the expression is increased at least three-fold with nutrient depravation even though no new insertion were observed. These findings point out that MpSaci collaborated and, even though is primarily represented by non-autonomous elements, still might contribute to the generation of genetic variability in the most important cacao pathogen in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe A, Asano K, Sone T (2009) Identification and characterization of Rhizot, a novel LTR retrotransposon of Rhizopus oryzae and R. delemar. Biosci Biotechnol Biochem 73:1860–1862

    CAS  PubMed  Google Scholar 

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amyotte SG, Tan X, Pennerman K, Jimenez-Gasco MM, Klosterman SJ, Ma LJ, Dobinson KF, Veronese P (2012) Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC Genomics 13:314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anaya N, Roncero MIG (1995) Skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum. Mol Gen Genet 249:637–647

    CAS  PubMed  Google Scholar 

  • Anaya N, Roncero MIG (1996) Stress-induced rearrangement of Fusarium retrotransposon sequences. Mol Gen Genet 253:89–94

    CAS  PubMed  Google Scholar 

  • Andebrhan T, Figueira A, Yamada MM, Cascardo J, Furtek DB (1999) Molecular fingerprinting suggests two primary outbreaks of witches’ broom disease (Crinipellis perniciosa) of Theobroma cacao in Bahia, Brazil. Eur J Plant Pathol 105:167–175

    CAS  Google Scholar 

  • Arruda MCC, Ferreira MASV, Miller RNG, Resende MLV, Felipe MSS (2003a) Nuclear and mitochondrial rDNA variability in Crinipellis perniciosa from different geographic origins and hosts. Mycol Res 107:25–37

    PubMed  Google Scholar 

  • Arruda MCC, Miller RNG, Ferreira MASV, Felipe MSS (2003b) Comparison of Crinipellis perniciosa isolates from Brazil by ERIC repetitive element sequence-based PCR genomic fingerprint. Plant Pathol 52:236–244

    Google Scholar 

  • Attard A, Gout L, Ross S, Parlange F, Cattolico L, Balesdent MH, Rouxel T (2005) Truncated and RIP-degenerated copies of the LTR retrotransposon Pholy are clustered in a pericentromeric region of the Leptosphaeria maculans genome. Fungal Genet Biol 42:30–41

    CAS  PubMed  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68

    CAS  PubMed  Google Scholar 

  • Bingham PM, Zachar Z (1989) Retrotransposons and the FB transposons from Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, pp 485–502

    Google Scholar 

  • Bouvet GF, Jacobi V, Plourde KV, Bernier L (2008) Stress-induced mobility of OPHIO1 and OPHIO2, DNA transposons of the Dutch elm disease fungi. Fungal Genet Biol 45:565–578

    CAS  PubMed  Google Scholar 

  • Braumann I, van den Berg M, Kempken F (2007) Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysogenum. Fungal Genet Biol 44:1399–1414

    CAS  PubMed  Google Scholar 

  • Braumann I, van den Berg MA, Kempken F (2008) Strain-specific retrotransposon-mediated recombination in commercially used Aspergillus niger strain. Mol Genet Genomics 280:319–325

    CAS  PubMed  Google Scholar 

  • Chadha S, Sharma M (2014) Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae. PLoS One 9(4):e94415. doi:10.1371/journal.pone.0094415

    PubMed Central  PubMed  Google Scholar 

  • Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y (2011) Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7:e1002147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clutterbuck AJ (2011) Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol 48:306–326

    PubMed  Google Scholar 

  • Daboussi MJ (1996) Fungal transposable elements: generators of diversity and genetic tools. J Genet 75:325–339

    CAS  Google Scholar 

  • Daboussi MJ, Capy P (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol 57:275–299

    CAS  PubMed  Google Scholar 

  • Daboussi MJ, Langin T, Brygoo Y (1992) Fot1, a new family of fungal transposable elements. Mol Gen Genet 232:12–16

    CAS  PubMed  Google Scholar 

  • Davière JM, Langin T, Daboussi MJ (2001) Potential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome. Fungal Genet Biol 34:177–192

    PubMed  Google Scholar 

  • Diolez A, Marches F, Fortini D, Brygoo Y (1995) Boty, a long-terminal-repeat retroelement in the phytopatogenic fungus Botrytis cinerea. Appl Environ Microbiol 61:103–108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dobinson KF, Harris RE, Hamer JE (1993) Grasshoper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant Microbe Interact 6:114–126

    CAS  PubMed  Google Scholar 

  • Eto Y, Ikeda K, Chuma I, Kataoka T, Kuroda S, Kituchi N, Don LD, Kusaba M, Nakayashiki H, Tosa Y, Mayama S (2001) Comparative analyses of the distribution of various transposable elements in Pyricularia and their activity during and after the sexual cycle. Mol Gen Genet 264:565–577

    CAS  PubMed  Google Scholar 

  • Evans HC, Bezerra JL, Barreto RW (2013) Of mushrooms and chocolate trees: aetiology and phylogeny of witches’ broom and frosty pod diseases of cacao. Plant Pathol 62:728–740

    Google Scholar 

  • Farman ML, Tosa Y, Nitta N, Leong S (1996) MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol Gen Genet 251:665–674

    CAS  PubMed  Google Scholar 

  • Ferreira LFR, Duarte KMR, Gomes LH, Carvalho RS, Leal Junior GA, Aguiar MM, Armas RD, Tavares FCA (2012) Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae). Genet Mol Res 11:2559–2568

    CAS  PubMed  Google Scholar 

  • Fudal I, Ross S, Gout L, Blaise F, Kuhn ML, Eckert MR, Cattolico L, Bernard-Samain S, Balesdent MH, Rouxel T (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol Plant Microbe Interact 20:459–470

    CAS  PubMed  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    CAS  PubMed  Google Scholar 

  • Gioti A, Mushegian AA, Strandberg R, Stajich JE (2012) Unidirectional evolutionary transitions in fungal mating systems and the role of transposable elements. Mol Biol Evol 29:3215–3226

    CAS  PubMed  Google Scholar 

  • Gómez-Gómez E, Anaya N, Roncero MIG, Hera C (1999) Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum. Fungal Genet Biol 27:67–76

    PubMed  Google Scholar 

  • Gramacho KP, Risterucci AM, Lanaud C, Lima LS, Lopes UV (2007) Characterization of microsatellites in the fungal plant pathogen Crinipellis perniciosa. Mol Ecol Notes 7:153–155

    CAS  Google Scholar 

  • Griffith GW, Hedger JN (1994) The breeding biology of biotypes of the witches’ broom pathogen of cocoa, Crinipellis perniciosa. Heredity 72:278–289

    Google Scholar 

  • Hamann A, Feller F, Osiewacz HD (2000) Yeti, a degenerate gypsy-like LTR retrotransposon in the filamentous ascomycete Podospora anserina. Curr Genet 38:132–140

    CAS  PubMed  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225

    PubMed Central  PubMed  Google Scholar 

  • Ignacchiti MDC, Santana MF, Araújo EF, Queiroz MV (2011) The distribution of a transposase sequence in Moniliophthora perniciosa confirms the occurrence of two genotypes in Bahia, Brazil. Trop Plant Pathol 36:276–286

    Google Scholar 

  • Ikeda K, Nakayashiki H, Takagi M, Tosa Y, Mayama S (2001) Heat shock, copper sulfate and oxidative stress active the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Mol Genet Genomics 266:318–325

    CAS  PubMed  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    CAS  Google Scholar 

  • Kaneko I, Tanaka A, Tsuge T (2000) REAL, an LTR retrotransposon from the plant pathogenic fungus Alternaria alternata. Mol Gen Genet 263:625–634

    CAS  PubMed  Google Scholar 

  • Kang S, Lebrun MH, Farrall L, Valent B (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microbe Interact 14:671–674

    CAS  PubMed  Google Scholar 

  • Katoh I, Yasunaga T, Ikawa Y, Yoshinaka Y (1987) Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Nature 329:654–656

    CAS  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of Genome evolution. Science 303:1626–1632

    CAS  PubMed  Google Scholar 

  • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478

    CAS  PubMed  Google Scholar 

  • King AM, Adams MJ, Lefkowitz EJ, Carstens EB (2012) Virus taxonomy: classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses, 9th edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Kito H, Takahashi Y, Sato J, Fukiya S, Sone T, Tomita F (2003) Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates. Curr Genet 42:322–331

    CAS  PubMed  Google Scholar 

  • Koonin EV, Zhou S, Lucchesi JC (1995) The chromo superfamily: new members, duplication of the chromo domain and possible role in delivering transcription regulators to chromatin. Nucleic Acids Res 23:4229–4233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Schoonbeek HJ, Pradier JM, Leroux P, Waard MAD, Hahn M (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5:e1000696

    PubMed Central  PubMed  Google Scholar 

  • Kües U, Navarro-González M (2010) Mating-type orthologous genes in the primarily homothallic Moniliophthora perniciosa, the causal agent of Witches’ Broom Disease in cacao. J Basic Microbiol 50:442–451

    PubMed  Google Scholar 

  • Langin T, Capy P, Daboussi MJ (1995) The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet 246:19–28

    CAS  PubMed  Google Scholar 

  • Luderer R, Takken FLW, de Wit PJGM, Joosten MHAJ (2002) Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Mol Microbiol 45:875–884

    CAS  PubMed  Google Scholar 

  • Ma Z, Proffer TJ, Jacobs JL, Sundin GW (2006) Overexpression of the 14α-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl Environ Microbiol 72:2581–2585

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manning VA, Pandelova I, Dhillon B et al (2013) Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 3:41–63

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marmorstein R, Harrison SC (1994) Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev 8:2504–2512

    CAS  PubMed  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    CAS  PubMed  Google Scholar 

  • Maurer P, Réjasse A, Capy P, Langin T, Riba G (1997) Isolation of the transposable element hupfer from the entomopathogenic fungus Beauveria bassiana by insertion mutagenesis of the nitrate reductase structural gene. Mol Gen Genet 256:195–202

    CAS  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses oh the genome to challenge. Science 226:792–801

    CAS  PubMed  Google Scholar 

  • McHale MT, Roberts IN, Noble SM, Beaumont C, Whitehead MP, Seth D, Oliver RP (1992) CfT-1: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet 233:337–347

    CAS  PubMed  Google Scholar 

  • Medina PXL (2006) Isolamento e caracterização dos genes que codificam malato sintase e o repressor Nrg1 em Crinipellis perniciosa, agente causal da vassoura-de-bruxa no cacaueiro (Theobroma cacao). Ph.D. dissertation, Universidade Federal de Viçosa, Brazil

  • Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, Pereira GAG (2008) Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe? Mol Plant Pathol 9:577–588

    PubMed  Google Scholar 

  • Mes JJ, Haring MA, Cornelissen BJC (2000) Foxy: an active family of short interspersed nuclear elements from Fusarium oxysporum. Mol Gen Genet 263:271–280

    CAS  PubMed  Google Scholar 

  • Mieczkowski PA, Lemoine FJ, Petes TD (2006) Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5:1010–1020

    CAS  PubMed  Google Scholar 

  • Mondego JMC, Carazzolle MF, Costa GGL et al (2008) A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC Genom 9:548

    Google Scholar 

  • Moore SP, Liti G, Stefanisko KM, Nyswaner KM, Chang C, Louis EJ, Garfinkel DJ (2004) Analysis of a Ty1-less variant of Saccharomyces paradoxus: the gain and loss of Ty1 elements. Yeast 21:649–660

    CAS  PubMed  Google Scholar 

  • Murata H, Yamada A (2000) marY1, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl Environ Microbiol 66:3642–3645

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muszewska A, Hoffman-Sommer M, Grynberg M (2011) LTR retrotransposons in fungi. PloS One 6:e29425

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakayashiki H, Nishimoto N, Ikeda K, Tosa Y, Mayana S (1999) Degenerate MAGGY elements in a subgroup of Pyricularia grisea: a possible example of successful capture of a genetic invader by a fungal genome. Mol Gen Genet 261:958–966

    CAS  PubMed  Google Scholar 

  • Nitta N, Farman ML, Leong SA (1997) Genome organization of Magnaporthe grisea: integration of genetic maps, clustering of transposable elements and identification of genome duplications and rearrangments. Theor Appl Genet 95:20–32

    CAS  Google Scholar 

  • Okuda M, Ikeda K, Namiki F, Nishi K, Tsuge T (1998) Tfo1: an Ac-like transposon from the plant pathogenic fungus Fusarium oxysporum. Mol Gen Genet 258:599–607

    CAS  PubMed  Google Scholar 

  • Osorio-Solano C, Orozco-Castaño CA, López-Gartner GA, Rivera-Páez FA (2012) Variabilidad genética de Moniliophthora perniciosa (Stahel) Aime y Phillips-Mora, comb. nov. (Agaricales—Marasmiaceae) en variedades de cacao (Theobroma cacao L.). Acta Agron 61:93–101

    Google Scholar 

  • Parlange F, Oberhaensli S, Breen J, Platzer M, Taudien S, Šimková H, Wicker T, Doležel J, Keller B (2011) A major invasion of transposable elements accounts for the large size of the Blumeria graminis f. sp. tritici genome. Funct Integr Genomics 11:671–677

    CAS  PubMed  Google Scholar 

  • Pereira JF, Araújo EF, Brommonschenkel SH, Queiroz MV (2006) Elementos transponíveis em fungos fitopatogênicos. Rev Anual Patol Plant 14:303–362

    Google Scholar 

  • Pereira JF, Ignacchiti MDC, Araújo EF, Brommonschenkel SH, Cascardo JCM, Pereira GAG, Queiroz MV (2007) PCR amplification and sequence analyses of reverse transcriptase-like genes in Crinipellis perniciosa isolates. Fitopatol Bras 32:373–380

    Google Scholar 

  • Pereira JF, Almeida APMM, Cota J, Pamphile JA, Silva GF, Araújo EF, Gramacho KP, Brommonschenkel SH, Pereira GAG, Queiroz MV (2013) Boto, a class II transposon in Moniliophthora perniciosa, is the first representative of the PIF/Harbinger superfamily in a phytopathogenic fungus. Microbiology 159:112–125

    CAS  PubMed  Google Scholar 

  • Pereira JF, Consoli L, Bombonatto EAS, Bonato ALV, Maciel JLN (2014) Development of genomic SSR markers and molecular characterization of Magnaporthe oryzae isolates from wheat in Brazil. Biochem Genet 52:52–70

    CAS  PubMed  Google Scholar 

  • Ploetz RC, Schnell RJ, Ying Z, Zheng Q, Olano CT, Montamayor JC, Johnson ES (2005) Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. Eur J Plant Pathol 111:317–326

    CAS  Google Scholar 

  • Rep M, Van der Does HC, Cornelissen BJC (2005) Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation. Fungal Genet Biol 42:546–553

    CAS  PubMed  Google Scholar 

  • Rincones J, Meinhardt LW, Vidal BC, Pereira GAG (2003) Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao. Mycol Res 107:452–458

    CAS  PubMed  Google Scholar 

  • Rincones J, Mazotti GD, Griffith GW, Pomela A, Figueira A, Leal GA, Queiroz MV, Pereira JF, Pereira GAG, Meinhardt LW (2006) Genetic variability and chromosome-length polymorphisms of the witches’ broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycol Res 110:821–832

    CAS  PubMed  Google Scholar 

  • Rincones J, Scarpari LM, Carazzolle MF et al (2008) Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa. Mol Plant Microbe Interact 7:891–908

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365–386. http://www-genome.wi.mit.edu/cgibin/primer/primer3.cgi. Accessed 24 April 2006

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santana MF, Araújo EF, Souza JT, Mizubuti ESG, Queiroz MV (2012) Development of molecular markers based on retrotransposonsfor the analysis of genetic variability in Moniliophthora perniciosa. Eur J Plant Pathol 134:497–507

    CAS  Google Scholar 

  • Schulman AH (2012) Hitching a ride: nonautonomous retrotransposons and parasitism as a lifestyle. In: Grandbastien MA, Casacuberta JM (eds) Plant Transposable Elements, Topics in Current Genetics. Springer, Berlin, Heidelberg, pp 71–88

    Google Scholar 

  • Shnyreva AV (2003) Transposable elements are the factors involved in various rearragements and modifications of the fungal genomes. Russ J Genet 39:505–518

    CAS  Google Scholar 

  • Shull V, Hamer JE (1996a) Genetic differentiation in the rice blast fungus revealed by the distribution of the Fosbury retrotransposon. Fungal Genet Biol 20:59–69

    CAS  PubMed  Google Scholar 

  • Shull V, Hamer JE (1996b) Rearrangements at a DNA-fingerprint locus in the rice blast fungus. Curr Genet 30:263–271

    CAS  PubMed  Google Scholar 

  • Silva JRQ, Figueira A, Pereira GAG, Albuquerque P (2008) Development of novel microsatellites from Moniliophthora perniciosa, causal agent of the witches’ broom disease of Theobroma cacao. Mol Ecol Res 8:783–785

    CAS  Google Scholar 

  • Singh PK, Thakur S, Rathour R, Variar M, Prashanthi SK, Singh AK, Singh UD, Sharma V, Singh NK, Sharma TR (2014) Transposon-based high sequence diversity in Avr-Pita alleles increases the potential for pathogenicity of Magnaporthe oryzae populations. Funct Integr Genomics. doi:10.1007/s10142-014-0369-0

    Google Scholar 

  • Starnes JH, Thornbury DW, Novikova OS, Rehmeyer CJ, Farman ML (2012) Telomere-targeted retrotransposons in the rice blast fungus Magnaporthe oryzae: agents of telomere instability. Genetics 191:389–406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanskanen JA, Sabot F, Vicient C, Schulman AH (2007) Life without GAG: the BARE-2 retrotransposon as a parasite’s parasite. Gene 390:166–174

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensibility of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thon MR, Pan HQ, Diener S, Papalas J, Taro A, Mitchell TK, Dean RA (2006) The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol 7:R16

    PubMed Central  PubMed  Google Scholar 

  • Varmus H, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, pp 53–108

    Google Scholar 

  • Watkinson JI, Hendricks L, Sioson AA, Heath LS, Bohnert HJ, Grene R (2008) Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum ssp. andigena have distinct expression profiles of genes associated with carbon metabolism. Plant Physiol Biochem 46:34–45

    CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribossomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    CAS  PubMed  Google Scholar 

  • **ong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:265–268

    Google Scholar 

  • Zhou E, Jia Y, Singh P, Correll JC, Lee FN (2007) Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol 44:1024–1034

    CAS  PubMed  Google Scholar 

  • Zhu P, Oudemans PV (2000) A long terminal repeat retrotransposon Cgret from the phytopathogenic fungus Colletotrichum goesporioides on cranberry. Curr Genet 38:241–247

    CAS  PubMed  Google Scholar 

  • Zolan ME (1995) Chromosome-length polymorphism in fungi. Microbiol Rev 59:686–698

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), SEAGRI (Secretaria de Agricultura, Irrigação e Reforma Agrária do Estado da Bahia), CARGILL/FUNCAMP/UNICAMP convenium, and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support. We also would like to acknowledge the contributions of the Center for Computational Engineering and Sciences at Universidade Estadual de Campinas, SP, Brazil (FAPESP/CEPID project #2013/08293-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa V. Queiroz.

Additional information

Communicated by G. Goldman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.F., Araújo, E.F., Brommonschenkel, S.H. et al. MpSaci is a widespread gypsy-Ty3 retrotransposon highly represented by non-autonomous copies in the Moniliophthora perniciosa genome. Curr Genet 61, 185–202 (2015). https://doi.org/10.1007/s00294-014-0469-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0469-3

Keywords

Navigation