Log in

Effect of acidic and alkaline pretreatment on functional, structural and thermal properties of gelatin from waste fish scales

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Gelatin (G) is a thermoreversible polymer produced by hydrolysis of a structural protein called collagen. Fish scales (mixed freshwater species) were subjected to hydrochloric acid (HCl), sodium hydroxide (NaOH) and both HCl and NaOH pretreatment individually, and gelatin extraction with distilled water was labeled as GA, GB and GC, respectively. The percentage yield of gelatin GB (9.6 ± 0.5%) was higher than GA (7 ± 0.2%) and GC (9 ± 1.4%). Amino acids and imino acids (proline and hydroxyproline) composition confirmed the characteristic nature of collagen. The gel strength of gelatin was affected by the pH of the extraction medium rather than the presence of imino acid composition. Extracted gelatin GA, GB and GC showed ʎmax at 230 nm indicating the peptide bond of gelatin and the presence of five amide bands I, II, III, A and B revealing the intrinsic nature of functional groups C=O, C–N, C–N, N–H and –NH3 stretching vibrations of collagen, respectively. Two diffraction peaks of 2ɵ, one sharp peak around 10° and one broad peak around 20° represent the partially crystalline nature of fish gelatin. The presence of β, α1 and α2 chain at around 200 KDa, 110 KDa and 100 KDa, respectively, confirmed the triple helix nature of the gelatin. Glass transition temperature (Tg) of gelatin GA, GB and GC at 76.3 °C, 72.9 °C and 71.4 °C, respectively, and melting temperature (Tm) of GA, GB and GC at 406 °C, 295.2 °C and 291.7 °C, respectively, were evident through thermal study. The effect of acidic and alkaline pretreatment of fish scale had displayed fibrillar pattern, evenly spaced porous nature and network-like structure of gelatin which was thermally stable up to ~ 300 °C. Hence, waste fish scales have proved to be a cost-effective and environmentally friendly alternative raw material for gelatin production paving the way for safe alternatives for biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Martins MEO, Sousa JR, Claudino RL et al (2018) Thermal and chemical properties of gelatin from tilapia (Oreochromis niloticus) scale. J Aquat Food Prod Technol 27:1120–1133. https://doi.org/10.1080/10498850.2018.1535530

    Article  CAS  Google Scholar 

  2. Han YP, Zhao XH (2016) Properties of bovine gelatin cross-linked by a mixture of two oxidases (horseradish peroxidase and glucose oxidase) and glucose. CYTA J Food 14:457–464. https://doi.org/10.1080/19476337.2015.1134671

    Article  CAS  Google Scholar 

  3. Irwandi J, Faridayanti S, Mohamed ESM et al (2009) Extraction and characterization of gelatin from different marine fish species in Malaysia. Int Food Res J 16:381–389

    Google Scholar 

  4. Kaleli A, Kulikovskiy MS, Solak CN (2017) Some new records for marine diatom flora of Turkey from Akliman, Sinop (Black Sea). Turk J Fish Aquat Sci 17:1387–1395. https://doi.org/10.4194/1303-2712-v17

    Article  Google Scholar 

  5. Haryati D, Nadhifa L, Humairah AN (2019) Extraction and characterization of gelatin from rabbitfish skin (Siganus canaliculatus) with enzymatic method using bromelin enzyme. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/355/1/012095

    Article  Google Scholar 

  6. da Silva EVC, de Lourenço L, FH, Pena RS, (2017) Optimización y caracterización de la gelatina de piel de kumakuma (Brachyplatystoma filamentosum). CYTA J Food 15:361–368. https://doi.org/10.1080/19476337.2016.1266391

    Article  CAS  Google Scholar 

  7. Кao Txи Xye, Hгyeн Txи Mинь Xaнг, Лe Hгyeн Txaнь et al (2017) Physicochemical characteristics of gelatin extracted from the scales of seabream Sparus latus Houttuyn (using raw material from vietnam). Vestn Astrakhan State Tech Univ 90–96. https://doi.org/10.24143/1812-9498-2017-1-90-96

  8. Ahmad MW (2019) Current status of fish waste management in Karwar city. Int J Res Appl Sci Eng Technol 7:3663–3568. https://doi.org/10.22214/ijraset.2019.4597

    Article  Google Scholar 

  9. Ayub A, Srithilat K, Fatima I et al (2022) Arsenic in drinking water: overview of removal strategies and role of chitosan biosorbent for its remediation. Springer, Berlin Heidelberg

    Google Scholar 

  10. Ahmad K, Shah HUR, Ashfaq M, Nawaz H (2022) Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. Rev Inorg Chem 42:197–227. https://doi.org/10.1515/revic-2021-0005

    Article  CAS  Google Scholar 

  11. Karim AA, Bhat R (2009) Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll 23:563–576. https://doi.org/10.1016/j.foodhyd.2008.07.002

    Article  CAS  Google Scholar 

  12. Karayannakidis PD, Zotos A (2016) Fish processing by-products as a potential source of gelatin: a review. J Aquat Food Prod Technol 25:65–92. https://doi.org/10.1080/10498850.2013.827767

    Article  CAS  Google Scholar 

  13. Fan HY, Dumont MJ, Simpson BK (2017) Extraction of gelatin from salmon (Salmo salar) fish skin using trypsin-aided process: optimization by Plackett-Burman and response surface methodological approaches. J Food Sci Technol 54:4000–4008. https://doi.org/10.1007/s13197-017-2864-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chandra MV, Shamasundar BA (2015) Texture profile analysis and functional properties of gelatin from the skin of three species of fresh water fish. Int J Food Prop 18:572–584. https://doi.org/10.1080/10942912.2013.845787

    Article  CAS  Google Scholar 

  15. Hossain MA, Ganguly A, Rahman SA et al (2017) Amino acid profile of the gelatin extracted from the scales of catla, rohu, grass carp and their mixed type. Bangladesh J Zool 44:185–195. https://doi.org/10.3329/bjz.v44i2.32758

    Article  Google Scholar 

  16. Jakhar JK, Kumar A, Vardia HK (2016) Extraction of gelatin from skin and scale of Indian major carps. Environ Ecol 34:1513–1518

    Google Scholar 

  17. Kiplagat CS, Onyari JM, Mulaa F, Wabomba J (2017) Extraction and characterization of gelatin from Lates niloticus and potential industrial applications. Biofarmasi J Nat Prod Biochem 15:53–64. https://doi.org/10.13057/biofar/f150202

    Article  Google Scholar 

  18. Derkach SR, Kuchina YA, Baryshnikov AV et al (2019) Tailoring cod gelatin structure and physical properties with acid and alkaline extraction. Polymers (Basel) 11:1–17. https://doi.org/10.3390/polym11101724

    Article  CAS  Google Scholar 

  19. Kamatchi P, Leela K (2016) Extraction, characterization and application of gelatin from Carcharhinus amblyrhyncho and Sphyraena barracuda. J Biotechnol Biochem 2:40–49

    Google Scholar 

  20. Monsur HA, Jaswir I, Salleh HM, Alkahtani HA (2014) Effects of pretreatment on properties of gelatin from perch (Lates niloticus) skin. Int J Food Prop 17:1224–1236. https://doi.org/10.1080/10942912.2012.685676

    Article  CAS  Google Scholar 

  21. See SF, Ghassem M, Mamot S, Babji AS (2015) Effect of different pretreatments on functional properties of African catfish (Clarias gariepinus) skin gelatin. J Food Sci Technol 52:753–762. https://doi.org/10.1007/s13197-013-1043-6

    Article  CAS  PubMed  Google Scholar 

  22. Sockalingam K, Idris MI, Abdullah HZ (2015) Effects of pre-treatment conditions on black tilapia fish scales for gelatin extraction. Adv Mater Res 1125:276–280. https://doi.org/10.4028/www.scientific.net/amr.1125.276

    Article  Google Scholar 

  23. Sockalingam K, Abdullah HZ (2014) Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales. Malays J Microsc 10:132–137

    Google Scholar 

  24. Zakaria S, Hidayah N, Bakar A (2015) Extraction and characterization of gelatin from black tilapia (Oreochromis niloticus) scales and bones. 77–80. https://doi.org/10.15242/iicbe.c0815040

  25. Roy BC, Omana DA, Betti M, Bruce HL (2017) Extraction and characterization of gelatin from bovine lung. Food Sci Technol Res 23:255–266. https://doi.org/10.3136/fstr.23.255

    Article  CAS  Google Scholar 

  26. Kuan YH, Nafchi AM, Huda N et al (2017) Comparison of physicochemical and functional properties of duck feet and bovine gelatins. J Sci Food Agric 97:1663–1671. https://doi.org/10.1002/jsfa.7970

    Article  CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  28. Lai JY (2009) The role of bloom index of gelatin on the interaction with retinal pigment epithelial cells. Int J Mol Sci 10:3442–3456. https://doi.org/10.3390/ijms10083442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bichukale AD (2018) Functional properties of gelatin extracted from poultry skin and bone waste. Int J Pure Appl Biosci 6:87–101. https://doi.org/10.18782/2320-7051.6768

    Article  Google Scholar 

  30. Ratnasari I, Yuwono SS, Nusyam H, Widjanarko SB (2013) Extraction and characterization of gelatin from different fresh water fishes as alternative sources of gelatin. Int Food Res J 20:3085–3091

    Google Scholar 

  31. Naseem K, Ali F, Tahir MH et al (2022) Investigation of catalytic potential of sodium dodecyl sulfate stabilized silver nanoparticles for the degradation of methyl orange dye. J Mol Struct 1262:132996. https://doi.org/10.1016/j.molstruc.2022.132996

    Article  CAS  Google Scholar 

  32. Huang T, Tu Zc, **nchen-Shangguan et al (2017) Rheological and structural properties of fish scales gelatin: effects of conventional and ultrasound-assisted extraction. Int J Food Prop 20:1210–1220. https://doi.org/10.1080/10942912.2017.1295388

    Article  CAS  Google Scholar 

  33. Paul EJ, Padmapriya B (2021) Thermally stable collagen from Piranha and Rohu with improved physical, biochemical, and morphological properties. J Appl Polym Sci. https://doi.org/10.1002/app.50796

    Article  Google Scholar 

  34. Dinçer MT, Ağçay ÖY, Sargin H, Bayram H (2015) Functional properties of gelatin recovered from scales of farmed sea bass (Dicentrarchus labrax). Turk J Vet Anim Sci 39:102–109. https://doi.org/10.3906/vet-1406-68

    Article  CAS  Google Scholar 

  35. Tu Zc, Huang T, Wang H et al (2015) Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. J Food Sci Technol 52:2166–2174. https://doi.org/10.1007/s13197-013-1239-9

    Article  CAS  PubMed  Google Scholar 

  36. Das MP, Suguna PR, Prasad K et al (2017) Extraction and characterization of gelatin: a functional biopolymer. Int J Pharm Pharm Sci 9:239. https://doi.org/10.22159/ijpps.2017v9i9.17618

    Article  CAS  Google Scholar 

  37. Mureithi AW, Onyari JM, Chisutia Wanyonyi W, Mulaa FJ (2017) Amino acid composition of gelatin extracted from the scales of different marine fish species in Kenya. 3:558–563

  38. Pak, William L, Grossfield, Joseph, Arnold KS (1970) © 1970 Nature Publishing Group. Nat Publ Gr 228:726–734

  39. Brückner H, Wittner R, Godel H (1991) Fully automated high-performance liquid chromatographic separation of DL-amino acids derivatized with o-phthaldialdehyde together with N-isobutyryl-cysteine. Appl Food Samples Chromatogr 32:383–388. https://doi.org/10.1007/BF02321438

    Article  Google Scholar 

  40. Woessner JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447. https://doi.org/10.1016/0003-9861(61)90291-0

    Article  CAS  PubMed  Google Scholar 

  41. Manuscript A (2010) Plant stress tolerance. NIH public. Access 639:1–14. https://doi.org/10.1007/978-1-60761-702-0

    Article  Google Scholar 

  42. Tinrat S, Sila-Asna M (2017) Optimization of gelatin extraction and physico-chemical properties of fish skin and bone gelatin: its application to panna cotta formulas. Curr Res Nutr Food Sci 5:263–273. https://doi.org/10.12944/CRNFSJ.5.3.11

    Article  Google Scholar 

  43. Widyasari R, Rawdkuen S (2014) Extraction and characterization of gelatin from chicken feet by acid and ultrasound assisted extraction. Food Appl Biosci J 2:85–97. https://doi.org/10.14456/FABJ.2014.7

    Article  Google Scholar 

  44. Shyni K, Hema GS, Ninan G et al (2014) Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita). Food Hydrocoll 39:68–76. https://doi.org/10.1016/j.foodhyd.2013.12.008

    Article  CAS  Google Scholar 

  45. Mad-Ali S, Benjakul S, Prodpran T, Maqsood S (2017) Characteristics and gelling properties of gelatin from goat skin as affected by drying methods. J Food Sci Technol 54:1646–1654. https://doi.org/10.1007/s13197-017-2597-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahmoodani F, Ardekani VS, Fern SS et al (2014) Optimization of extraction and physicochemical properties of gelatin from pangasius catfish (pangasius sutchi) skin. Sains Malays 43:995–1002

    CAS  Google Scholar 

  47. Abuibaid A, AlSenaani A, Hamed F et al (2020) Microstructural, rheological, gel-forming and interfacial properties of camel skin gelatin. Food Struct 26:100156. https://doi.org/10.1016/j.foostr.2020.100156

    Article  Google Scholar 

  48. Prommajak T, Raviyan P (2013) Physical properties of gelatin extracted from skin of Thai panga fish (Pangasius bocourti Sauvage). Food Appl Biosci J 1:131–145

    Google Scholar 

  49. Kumar DP, Chandra MV, Elavarasan K, Shamasundar BA (2018) Structural properties of gelatin extracted from croaker fish (Johnius sp) skin waste. Int J Food Prop 20:S2612–S2625. https://doi.org/10.1080/10942912.2017.1381702

    Article  CAS  Google Scholar 

  50. Young S, Wong M, Tabata Y, Mikos AG (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109:256–274. https://doi.org/10.1016/j.jconrel.2005.09.023

    Article  CAS  PubMed  Google Scholar 

  51. Yang H, Wang Y, Zhou P, Regenstein JM (2008) Effects of alkaline and acid pretreatment on the physical properties and nanostructures of the gelatin from channel catfish skins. Food Hydrocoll 22:1541–1550. https://doi.org/10.1016/j.foodhyd.2007.10.007

    Article  CAS  Google Scholar 

  52. Nurul AG, Sarbon NM (2015) Effects of pH on functional, rheological and structural properties of eel (Monopterus sp.) skin gelatin compared to bovine gelatin. Int Food Res J 22:572–583

    CAS  Google Scholar 

  53. Mariod AA, Adam HF (2013) Review: gelatin, source, extraction and industrial applications. Acta Sci Pol Technol Aliment 12:135–147

    CAS  Google Scholar 

  54. Arnesen JA, Gildberg A (2007) Extraction and characterisation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresour Technol 98:53–57. https://doi.org/10.1016/j.biortech.2005.11.021

    Article  CAS  PubMed  Google Scholar 

  55. Cheow CS, Norizah MS, Kyaw ZY, Howell NK (2007) Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma). Food Chem 101:386–391. https://doi.org/10.1016/j.foodchem.2006.01.046

    Article  CAS  Google Scholar 

  56. Jongjareonrak A, Benjakul S, Visessanguan W, Tanaka M (2006) Skin gelatin from bigeye snapper and brownstripe red snapper: chemical compositions and effect of microbial transglutaminase on gel properties. Food Hydrocoll 20:1216–1222. https://doi.org/10.1016/j.foodhyd.2006.01.006

    Article  CAS  Google Scholar 

  57. Ahmad K, Shah H, ur R, Khan MS, et al (2022) Lead In drinking water: adsorption method and role of zeolitic imidazolate frameworks for its remediation: a review. J Clean Prod 368:133010. https://doi.org/10.1016/j.jclepro.2022.133010

    Article  CAS  Google Scholar 

  58. Shah HUR, Ahmad K, Bashir MS et al (2022) Metal organic frameworks for efficient catalytic conversion of CO2 and CO into applied products. Mol Catal 517:112055. https://doi.org/10.1016/j.mcat.2021.112055

    Article  CAS  Google Scholar 

  59. Science F, Journal T, Acid SW, Treatment A (2015) Food science and technology journal comparative quality of proteins and morphological structures of gelatin from sheepskin with acid and alkaline treatment. 1–8

  60. Ahmad K, Habib-Ur-Rehman S, Ashfaq A et al (2021) Synthesis of new series of phenyldiazene based metal complexes for designing most active antibacterial and antifungal agents. J Chem Soc Pak 43:578–586. https://doi.org/10.52568/000599

    Article  CAS  Google Scholar 

  61. Ahmad K, Shah H-R, Ahmad M et al (2022) Comparative study between two zeolitic imidazolate frameworks as adsorbents for removal of organoarsenic, As(III) and As(V) species from water. Braz J Anal Chem. https://doi.org/10.30744/brjac.2179-3425.ar-112-2021

    Article  Google Scholar 

  62. Shehap AM, Mahmoud KH, Abd El-Kader MFH, El-Basheer TM (2015) Preparation and thermal properties of gelatin/tgs composite films. Middle East J Appl Sci 5:157–170

    Google Scholar 

  63. Ahmad T, Ismail A, Ahmad SA et al (2020) Extraction, characterization and molecular structure of bovine skin gelatin extracted with plant enzymes bromelain and zingibain. J Food Sci Technol 57:3772–3781. https://doi.org/10.1007/s13197-020-04409-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Regita G, Siregar M, Suprayitno E (2019) Amino acid composition of gelatin from Ephinephelus sp. J Agric Vet Sci 12:51–54. https://doi.org/10.9790/2380-1204015154

    Article  Google Scholar 

  65. Rahman MS, Al-Saidi G, Guizani N, Abdullah A (2010) Development of state diagram of bovine gelatin by measuring thermal characteristics using differential scanning calorimetry (DSC) and cooling curve method. Thermochim Acta 509:111–119. https://doi.org/10.1016/j.tca.2010.06.011

    Article  CAS  Google Scholar 

  66. Noh SW, Song DH, Ham YK et al (2019) Interaction of porcine myofibrillar proteins and various gelatins: Impacts on gel properties. Food Sci Anim Resour 39:229–239. https://doi.org/10.5851/kosfa.2019.e18

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kwak HW, Woo H, Kim IC, Lee KH (2017) Fish gelatin nanofibers prevent drug crystallization and enable ultrafast delivery. RSC Adv 7:40411–40417. https://doi.org/10.1039/c7ra06433k

    Article  CAS  Google Scholar 

  68. Rahman MS, Al-Saidi GS, Guizani N (2008) Thermal characterisation of gelatin extracted from yellowfin tuna skin and commercial mammalian gelatin. Food Chem 108:472–481. https://doi.org/10.1016/j.foodchem.2007.10.079

    Article  CAS  PubMed  Google Scholar 

  69. Chuaynukul K, Thummanoon Prodpran SB (2014) Preparation, thermal properties and characteristics of gelatin molding compound resin. J Chem Environ Sci 2:1–9

    Google Scholar 

  70. Neelam A, Omm-e-Hany SJ, Mahmood SJ, Ishteyaq S (2018) Properties and thermal degradation studies of gelatin-based film—exploring the biopolymer for plastic advancement. Int J Food Nutr Sci 5:69–73. https://doi.org/10.15436/2377-0619.18.1847

    Article  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to the management of PSG College of Technology, Peelamedu, Coimbatore, for providing the necessary facilities to carry out this research work.

Funding

The authors declare that no funds, grants and support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

VK supervised the experimental assays and contributed to edit the manuscript. MR designed the experimental part and a major contribution in editing the manuscript. VV carried out the experimental part and a major contribution in writing the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to V. Venupriya.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venupriya, V., Krishnaveni, V. & Ramya, M. Effect of acidic and alkaline pretreatment on functional, structural and thermal properties of gelatin from waste fish scales. Polym. Bull. 80, 10533–10567 (2023). https://doi.org/10.1007/s00289-022-04600-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04600-9

Keywords

Navigation