Log in

Incorporation of polyethylene fillers in all-polymer high-thermal-conductivity composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work presents a lightweight electrically insulating composite material for high thermal conductivity: all polymer composites created by mixing ultra-high molecular weight polyethylene flakes into a matrix of low-density polyethylene or ethylene vinyl acetate. The ultra-high molecular weight polyethylene flakes have a reported thermal conductivity of 40 W m−1 K−1, and when 30 volume percent is compounded in an ethylene vinyl acetate matrix, the thermal conductivity is measured to be 2.5 W m−1 K−1 at 52 °C and the notched impact strength is 350 J/m. The temperature stability of the polyethylene flakes is investigated using polarized Raman spectrometry and thermal conductivity measurements, and it is discovered that flakes compounded at temperatures of 115 °C and above show a dramatic drop in thermal conductivity due to melting and reduced polymer chain alignment. This study highlights the possibility of using high-thermal-conductivity polymer fillers in bulk composites for near-room-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huang XY, Jiang PK, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27(4):8–16

    Article  Google Scholar 

  2. **e BH, Huang X, Zhang GJ (2013) High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos Sci Technol 85:98–103

    Article  CAS  Google Scholar 

  3. Tavman IH, Akinci H (2000) Transverse thermal conductivity of fiber reinforced polymer composites. Int Commun Heat Mass Transf 27(2):253–261

    Article  Google Scholar 

  4. Acik G, Altinkok C (2019) Polypropylene microfibers via solution electrospinning under ambient conditions. J Appl Polym Sci 136(45):48199

    Article  Google Scholar 

  5. Chung T (2002) Synthesis of functional polyolefin copolymers with graft and block structures. Prog Polym Sci 27(1):39–85

    Article  CAS  Google Scholar 

  6. Ghasemi, H et al (2014, May). High thermal conductivity ultra-high molecular weight polyethylene (UHMWPE) films. In: Fourteenth intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm). IEEE, pp 235–239

  7. Wang X et al (2013) Thermal conductivity of high-modulus polymer fibers. Macromolecules 46(12):4937–4943

    Article  CAS  Google Scholar 

  8. Lv W et al (2018) Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding. Express Polym Lett 12(3):215–226

    Article  CAS  Google Scholar 

  9. Allan J, Pinder H, Dehouche Z (2016) Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector. Aip Adv 6(3):035011

    Article  Google Scholar 

  10. Lee B et al (2008) Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell. Express Polymer Letters 2(5):357–363

    Article  CAS  Google Scholar 

  11. Standard test method for thermal transmission properties of thermally conductive electrical insulation materials

  12. Thompson DR, Rao SR, Cola BA (2013) A stepped-bar apparatus for thermal resistance measurements. J Electron Packag 135:041002–041010

    Article  Google Scholar 

  13. Standard test methods for determining the Izod pendulum impact resistance of plastics (2018)

  14. Choy CL (1977) Thermal-conductivity of polymers. Polymer 18(10):984–1004

    Article  CAS  Google Scholar 

  15. Henry A (2014) Thermal transport in polymers. Annu Rev Heat Transf 17:485–520

    Article  Google Scholar 

  16. Shen S et al (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5(4):251

    Article  CAS  Google Scholar 

  17. Xu Y et al (2019) Nanostructured polymer films with metal-like thermal conductivity. Nat Commun 10(1):1771

    Article  Google Scholar 

  18. Devaux E, Caze C (1999) Composites of UHMW polyethylene fibres in a LD polyethylene matrix. I. Processing conditions. Compos Sci Technol 59(3): 459–466

  19. Koenig JL (2001) Infrared and Raman spectroscopy of polymers, vol 12. iSmithers Rapra Publishing

  20. Citra MJ et al (1995) Molecular orientation of high-density polyethylene fibers characterized by polarized Raman spectroscopy. Macromolecules 28(11):4007–4012

    Article  CAS  Google Scholar 

  21. Pigeon M, Prud'Homme RE, Pezolet M (1991) Characterization of molecular orientation in polyethylene by Raman spectroscopy. Macromolecules 24(20):5687–5694

    Article  CAS  Google Scholar 

  22. Strobl G, Hagedorn W (1978) Raman spectroscopic method for determining the crystallinity of polyethylene. J Polym Sci Polym Phys Ed 16(7):1181–1193

    Article  CAS  Google Scholar 

  23. Lu P, He T (2017) Annealing behavior of ultrahigh molecular weight polyethylene investigated by confocal micro-Raman spectroscopy combined with two-dimensional correlation spectroscopy. Int J Polym Anal Charact 22(1):17–26

    Article  CAS  Google Scholar 

  24. Kida T, Hiejima Y, Nitta K-H (2016) Raman spectroscopic study of high-density polyethylene during tensile deformation. Int J Exp Spectrosc Tech 1(1):001–006

    Article  Google Scholar 

  25. Samuel AZ et al (2017) Estimating percent crystallinity of polyethylene as a function of temperature by Raman spectroscopy multivariate curve resolution by alternating least squares. Anal Chem 89(5):3043–3050

    Article  CAS  Google Scholar 

  26. Bailey R et al (1977) Raman studies on oriented, high modulus, polyethylene. Spectrochim Acta, Part A 33(12):1053–1058

    Article  Google Scholar 

  27. Shrestha R et al (2018) Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat Commun 9:1–9

  28. Lopes CM, Felisberti MI (2004) Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC. Polym Test 23(6):637–643

    Article  CAS  Google Scholar 

  29. Devaux E, Caze C (1999) Composites of ultra-high-molecular-weight polyethylene fibres in a low-density polyethylene matrix: II fibre/matrix adhesion. Compos Sci Technol 59(6):879–882

    Article  CAS  Google Scholar 

  30. Greco A et al (2019) Thermal and mechanical analysis of polyethylene homo-composites processed by rotational molding. Polymers 11(3):528

    Article  Google Scholar 

  31. Nan C-W et al (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699

    Article  CAS  Google Scholar 

  32. Pollack GL (1969) Kapitza resistance. Rev Mod Phys 41(1):48

    Article  CAS  Google Scholar 

  33. Mergenthaler D et al (1992) Thermal conductivity in ultraoriented polyethylene. Macromolecules 25(13):3500–3502

    Article  CAS  Google Scholar 

  34. Ajji A, Ait-Kadi A, Rochette A (1992) Polyethylene-ultra high modulus polyethylene short fibers composites. J Compos Mater 26(1):121–131

    Article  CAS  Google Scholar 

  35. He T, Porter RS (1988) Melt transcrystallization of polyethylene on high modulus polyethylene fibers. J Appl Polym Sci 35(7):1945–1953

    Article  CAS  Google Scholar 

  36. Ishida H, Bussi P (1991) Surface induced crystallization in ultrahigh-modulus polyethylene fiber-reinforced polyethylene composites. Macromolecules 24(12):3569–3577

    Article  CAS  Google Scholar 

  37. Zhou T et al (2019) The impact of polymer matrix blends on thermal and mechanical properties of boron nitride composites. J Appl Polymer Sci. https://doi.org/10.1002/app.48661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Bougher or Matthew Smith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berenguer, J.P., Berman, A., Quill, T. et al. Incorporation of polyethylene fillers in all-polymer high-thermal-conductivity composites. Polym. Bull. 78, 3835–3850 (2021). https://doi.org/10.1007/s00289-020-03282-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03282-5

Keywords

Navigation