Log in

High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Low ionic conductivity and poor chemical stability are the two key parameters that limit the use of many anion-exchange membranes in electrochemical applications like rechargeable batteries and fuel cells. Herein we report a method for the synthesis of a high performance anion-exchange membrane fabricated by incorporating calcium titanate nanoparticles (CaTiO3) into polyvinyl alcohol (PVA) matrix. The CaTiO3 was synthesized by a new co-precipitation method from a solution of two simple precursors, viz potassium titanyl oxalate and calcium chloride. The XRD data of the synthesized nanoparticles indicate a phase pure orthorhombic perovskite structure. Morphological features investigated with SEM and TEM studies, reveal that the CaTiO3 is having spherical shape with a diameter of approximately 200 nm. The PVA/CaTiO3 nanocomposite membranes were fabricated by solution casting method from a well dispersed suspension of CaTiO3 in PVA and characterized by FT-IR spectroscopy, TGA, SEM, AC impedance analysis and tensile strength measurements. The membranes with 30 wt% CaTiO3 content possess ionic conductivity of 66 mS cm−1 at room temperature. The electrochemical performance of an all-iron redox flow cell was studied using galvanostatic charge–discharge tests using the above nanocomposite membrane as separator and the system exhibited a coulombic efficiency of 75% during the charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu Y, Zhang B, Kinsinger CL et al (2016) Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation. J Membr Sci 506:50–59. https://doi.org/10.1016/j.memsci.2016.01.042

    Article  CAS  Google Scholar 

  2. Pupkevich V, Glibin V, Karamanev D (2013) Phosphorylated polyvinyl alcohol membranes for redox Fe3+/H2 flow cells. J Power Sources 228:300–307. https://doi.org/10.1016/j.jpowsour.2012.11.080

    Article  CAS  Google Scholar 

  3. Kariduraganavar MY, Nagarale RK, Kittur AA, Kulkarni SS (2006) Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination 197:225–246. https://doi.org/10.1016/j.desal.2006.01.019

    Article  CAS  Google Scholar 

  4. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination—development to date and future potential. J Membr Sci 370:1–22. https://doi.org/10.1016/j.memsci.2010.12.036

    Article  CAS  Google Scholar 

  5. Zeng L, Zhao TS, Li YS (2012) Synthesis and characterization of crosslinked poly (vinyl alcohol)/layered double hydroxide composite polymer membranes for alkaline direct ethanol fuel cells. Int J Hydrogen Energy 7:1–8. https://doi.org/10.1016/j.ijhydene.2012.09.089

    Article  CAS  Google Scholar 

  6. Nishimura M, Higa M, Akamine K, Masudaya S (2008) Preparation and characterization of anion-exchange membranes with a semi-interpenetrating network structure of poly (vinyl alcohol) and poly (allyl amine). Desalination 233:157–165. https://doi.org/10.1016/j.desal.2007.09.038

    Article  CAS  Google Scholar 

  7. Qiu J, Li M, Ni J et al (2007) Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. J Membr Sci 297:174–180. https://doi.org/10.1016/j.memsci.2007.03.042

    Article  CAS  Google Scholar 

  8. Di Vona ML, Narducci R, Pasquini L et al (2014) Anion-conducting ionomers: study of type of functionalizing amine and macromolecular. Int J Hydrogen Energy 39:14039–14049. https://doi.org/10.1016/j.ijhydene.2014.06.166

    Article  CAS  Google Scholar 

  9. Koo JS, Kwak N, Sung T (2012) Synthesis and properties of an anion-exchange membrane based on vinylbenzyl chloride–styrene–ethyl methacrylate copolymers. J Membr Sci 423–424:293–301. https://doi.org/10.1016/j.memsci.2012.08.024

    Article  CAS  Google Scholar 

  10. Zeng R, Varcoe J (2011) Alkaline anion exchange membranes for fuel cells—a patent review. Recent Patents Chem Eng 44:1–50

    Google Scholar 

  11. Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377:1–35. https://doi.org/10.1016/j.memsci.2011.04.043

    Article  CAS  Google Scholar 

  12. Lin X, Wu L, Liu Y et al (2012) Alkali resistant and conductive guanidinium-based anion-exchange membranes for alkaline polymer electrolyte fuel cells. J Power Sources 217:373–380. https://doi.org/10.1016/j.jpowsour.2012.05.062

    Article  CAS  Google Scholar 

  13. Sajjad SD, Liu D, Wei Z et al (2015) Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs). J Power Sources 300:95–103. https://doi.org/10.1016/j.jpowsour.2015.08.002

    Article  CAS  Google Scholar 

  14. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26. https://doi.org/10.1016/j.memsci.2005.01.035

    Article  CAS  Google Scholar 

  15. Sharma S, Dinda M, Sharma CR, Ghosh PK (2014) A safer route for preparation of anion exchange membrane from inter-polymer film and performance evaluation in electrodialytic application. J Membr Sci 459:122–131. https://doi.org/10.1016/j.memsci.2014.02.011

    Article  CAS  Google Scholar 

  16. Mizutani Y (1990) Structure of ion exchange membranes. J Membr Sci 49:121–144. https://doi.org/10.1016/S0376-7388(00)80784-X

    Article  CAS  Google Scholar 

  17. Thomas OD, Soo KJWY, Peckham TJ et al (2012) A stable hydroxide-conducting polymer. J Am Chem Soc 10753–10756. https://doi.org/10.1021/ja303067t

  18. Yang C (2006) Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr Sci 51–60. https://doi.org/10.1016/j.memsci.2006.10.048

  19. Faraj M, Elia E, Boccia M et al (2011) New anion conducting membranes based on functionalized styrene–butadiene–styrene triblock copolymer for fuel cells applications. J Polym Sci Part A Polym Chem 49:3437–3447. https://doi.org/10.1002/pola.24781

    Article  CAS  Google Scholar 

  20. Wang X (2011) Preparation of alkaline anion exchange polymer membrane from methylated melamine grafted poly (vinylbenzyl chloride) and its fuel cell performance. J Mater Chem 12910–12916. https://doi.org/10.1039/c1jm12068a

  21. Wu H, Jia W, Liu Y (2017) An imidazolium-type hybrid alkaline anion exchange membrane with improved membrane stability for alkaline fuel cells applications. J Mater Sci 52:1704–1716. https://doi.org/10.1007/s10853-016-0462-y

    Article  CAS  Google Scholar 

  22. Yang CC, Chiu SJ, Chien WC, Chiu SS (2009) Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources 195:2212–2219. https://doi.org/10.1016/j.jpowsour.2009.10.091

    Article  CAS  Google Scholar 

  23. Chang HY, Lin CW (2003) Proton conducting membranes based on PEG/SiO2 nanocomposites for direct methanol fuel cells. J Membr Sci 218:295–306. https://doi.org/10.1016/S0376-7388(03)00187-X

    Article  CAS  Google Scholar 

  24. Sang S, Zhang J, Wu Q, Liao Y (2007) Influences of Bentonite on conductivity of composite solid alkaline polymer electrolyte PVA–Bentonite–KOH–H2O. Electrochim Acta 52:7315–7321. https://doi.org/10.1016/j.electacta.2007.06.004

    Article  CAS  Google Scholar 

  25. Heydari M, Moheb A, Ghiaci M, Masoomi M (2013) Effect of cross-linking time on the thermal and mechanical properties and pervaporation performance of poly(vinyl alcohol) membrane cross-linked with fumaric acid used for dehydration of isopropanol. J Appl Polym Sci 128:1640–1651. https://doi.org/10.1002/app.38264

    Article  CAS  Google Scholar 

  26. De Oliveira AHP, Nascimento MLF, De Oliveira HP (2016) Preparation of KOH-doped PVA/PSSA solid polymer electrolyte for DMFC: the influence of TiO 2 and PVP on performance of membranes. Fuel Cells 1–6. https://doi.org/10.1002/fuce.201500199

  27. Ran J, Wu L, He Y et al (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522:267–291. https://doi.org/10.1016/j.memsci.2016.09.033

    Article  CAS  Google Scholar 

  28. Zheng H, Reaney IM, Csete de Gyorgyfalva CDC (2004) Raman spectroscopy of CaTiO3-based perovskite. J Mater Res 19:488–495

    Article  CAS  Google Scholar 

  29. Zheng H, Bagshaw H, Csete de Gyrgyfalva GDC et al (2003) Raman spectroscopy and microwave properties of CaTiO3-based ceramics. J Appl Phys 94:2948–2956. https://doi.org/10.1063/1.1598271

    Article  CAS  Google Scholar 

  30. Demirors AF, Imhof A (2009) BaTiO3, SrTiO3, CaTiO3, and BaxSr1-xTiO3 particles: a general approach for monodisperse colloidal perovskites. Chem Mater 21:3002–3007. https://doi.org/10.1021/cm900693r

    Article  CAS  Google Scholar 

  31. Marques VS, Cavalcante LS, Sczancoski JC et al (2009) Synthesis of (Ca, Nd)TiO3 powders by complex polymerization, Rietveld refinement and optical properties. Spectrochim Acta Part A Mol Biomol Spectrosc 74:1050–1059. https://doi.org/10.1016/j.saa.2009.08.049

    Article  CAS  Google Scholar 

  32. Dubey AK, Basu B, Balani K et al (2011) Multifunctionality of perovskites BaTiO3 and CaTiO3 in a composite with hydroxyapatite as orthopedic implant materials. Integr Ferroelectr 131:119–126. https://doi.org/10.1080/10584587.2011.616425

    Article  CAS  Google Scholar 

  33. Sharma YK, Kharkwal M, Uma S, Nagarajan R (2009) Synthesis and characterization of titanates of the formula MTiO3 (M = Mn, Fe, Co, Ni and Cd) by co-precipitation of mixed metal oxalates. Polyhedron 28:579–585. https://doi.org/10.1016/j.poly.2008.11.056

    Article  CAS  Google Scholar 

  34. Urbain OM, Stemeri WR, Charles H (1940) United States “Patent. Office 7”. US Pat. 2208173

  35. Manohar AK, Kim KM, Plichta E et al (2016) JES focus issue on redox flow batteries—reversible fuel cells a high efficiency iron-chloride redox flow battery for large-scale energy storage. J Electrochem Soc 163:5118–5125. https://doi.org/10.1149/2.0161601jes

    Article  CAS  Google Scholar 

  36. Rai AK, Rao KN, Kumar LV, Mandal KD (2009) Synthesis and characterization of ultra fine barium calcium titanate, barium strontium titanate and Ba1−2xCax SrxTiO3 (x = 0.05, 0.10). J Alloys Compd 475:316–320. https://doi.org/10.1016/j.jallcom.2008.07.038

    Article  CAS  Google Scholar 

  37. Dong W, Zhao G, Bao Q, Gu X (2015) Solvothermal preparation of CaTiO3 prism and CaTi2O4(OH)2 nanosheet by a facile surfactant-free method. Mater Sci (MEDŽIAGOTYRA) 21:583–585. https://doi.org/10.5755/j01.ms.21.4.9697

    Article  Google Scholar 

  38. Wang ED, Zhao TS, Yang WW (2010) Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells. Int J Hydrogen Energy 35:2183–2189. https://doi.org/10.1016/j.ijhydene.2009.12.179

    Article  CAS  Google Scholar 

  39. AL-Sabagh AM, Abdeen Z (2010) Preparation and characterization of hydrogel based on poly(vinyl alcohol) cross-linked by different cross-linkers used to dry organic solvents. J Polym Environ 18:576–583. https://doi.org/10.1007/s10924-010-0200-5

    Article  CAS  Google Scholar 

  40. **ong Y, Liu QL, Zhu AM et al (2009) Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J Power Sources 186:328–333. https://doi.org/10.1016/j.jpowsour.2008.10.070

    Article  CAS  Google Scholar 

  41. Fu R, Woo J, Seo S et al (2008) Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations. J Power Sources 179:458–466. https://doi.org/10.1016/j.jpowsour.2007.12.118

    Article  CAS  Google Scholar 

  42. Pandey J, Mir FQ, Shukla A (2014) Synthesis of silica immobilized phosphotungstic acid (Si-PWA)-poly (vinyl alcohol) (PVA) composite ion-exchange membrane for direct methanol fuel cell. Int J Hydrogen Energy 1–9. https://doi.org/10.1016/j.ijhydene.2014.03.237

  43. Ran J, Wu L, Varcoe JR et al (2012) Development of imidazolium-type alkaline anion exchange membranes for fuel cell application. J Membr Sci 415–416:242–249. https://doi.org/10.1016/j.memsci.2012.05.006

    Article  CAS  Google Scholar 

  44. Wiff JP, Fuenzalida VM, Arias JL, Fernandez MS (2007) Hydrothermal-electrochemical CaTiO3 coatings as precursor of a biomimetic calcium phosphate layer. Mater Lett 61:2739–2743. https://doi.org/10.1016/j.matlet.2006.06.092

    Article  CAS  Google Scholar 

  45. Musse C, Sharma S, Madalena M et al (2016) New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells. J Power Sources 316:139–159. https://doi.org/10.1016/j.jpowsour.2016.03.052

    Article  CAS  Google Scholar 

  46. Li X, Zhang H, Mai Z et al (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147. https://doi.org/10.1039/c0ee00770f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. P. Moly gratefully acknowledges University Grants Commission (UGC) of India for the financial support under Faculty Development Programme, C. B. Jeena and P. J. Elsa are grateful to Council of Scientific and Industrial Research (CSIR), Govt. of India for Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Joy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moly, P.P., Jeena, C.B., Elsa, P.J. et al. High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries. Polym. Bull. 75, 4409–4428 (2018). https://doi.org/10.1007/s00289-018-2277-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2277-2

Keywords

Navigation