Log in

Bacillus litorisediminis sp. nov., a Thermophilic Bacterium Isolated from Mangrove Sediment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two aerobic, Gram-staining-positive, rod-shaped, endospore-forming, thermophilic bacterial strains, designated FJAT-47801T and FJAT-47835, were isolated from the sediment collected from Zhangjiang Estuary Mangrove National Nature Reserve in Fujian Province, China. Growth was observed at 25–55 °C (optimum, 50 °C) and pH 7.0–9.0 (optimum, pH 7.0), with up to 4.0% (w/v) NaCl (optimum, without NaCl). Strains FJAT-47801T and FJAT-47835 showed the highest 16S rRNA gene sequence similarity to Bacillus oleivorans (98.5%). The 16S rRNA gene sequence similarity between FJAT-47801T and FJAT-47835 was 99.9% indicating they were the same species. Phylogenetic (based on 16S rRNA gene sequences) and phylogenomic (based on 120 conserved bacterial single-copy genes) trees showed that strains FJAT-47801T and FJAT-47835 should be affiliated to the genus Bacillus. The of menaquinone of strain FJAT-47801T was MK-7. The major fatty acids of strain FJAT-47801T were iso-C15:0, anteiso-C15:0, iso-C17:0, and C16:0. The major polar lipids strain FJAT-47801T were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), and phosphatidylglycerol (PG). The genomic DNA G+C content of strain FJAT-47801T was 39.3%. The average nucleotide identity (84.3%) and the digital DNA–DNA hybridization value (28.1%) between strain FJAT-47801T and B. oleivorans CCTCC AB 2013353T were below the cut-off level for species delineation. Based on the above results, strain FJAT-47801T represents a novel species of the genus Bacillus, for which the name Bacillus litorisediminis sp. nov., is proposed. The type strain is FJAT-47801T (=GDMCC 1.2712T = JCM 34875T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The 16S rRNA gene and genome sequences of strain FJAT-47801T have been deposited in GenBank under accession numbers OM857626 and JAKZKT000000000, respectively.

Code Availability

Not applicable.

Abbreviations

ANI:

Average Nucleotide Identity

dDDH:

Digital DNA–DNA hybridization

PE:

Phosphatidylethanolamine

DPG:

Diphosphatidylglycerol

PG:

Phosphatidylglycerol

UAPL:

Unidentified amino phospholipid

References

  1. Cohn F (1872) Untersuchungen über Bakterien. Beitr Biol Pflanzen 1:127–224. https://doi.org/10.1007/BF01928656

    Article  Google Scholar 

  2. Tidjani Alou M, Rathored J, Traore SI, Khelaifia S, Michelle C (2015) Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut. New Microbes New Infect 8:61–69. https://doi.org/10.1016/j.nmni.2015.09.011

    Article  CAS  Google Scholar 

  3. Jung MY, KiM JS, Chang YH (2009) Bacillus acidiproducens sp. nov., vineyard soil isolates that produce lactic acid. Int J Syst Evol Microbiol 59:2226–2231. https://doi.org/10.1099/ijs.0.003913-0

    Article  CAS  Google Scholar 

  4. Xue Y, Ventosa A, Wang X, Ren P, Zhou P (2008) Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. Int J Syst Evol Microbiol 58:2828–2832. https://doi.org/10.1099/ijs.0.2008/000471-0

    Article  CAS  Google Scholar 

  5. Bae SS, Lee JH, Kim SJ (2005) Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough. Int J Syst Evol Microbiol 55:1211–1215. https://doi.org/10.1099/ijs.0.63424-0

    Article  CAS  Google Scholar 

  6. Yang GQ, Zhou XM, Zhou SG, Yang DH (2013) Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus. Int J Syst Evol Microbiol 63:3672–3678. https://doi.org/10.1099/ijs.0.048942-0

    Article  CAS  Google Scholar 

  7. Zhang L, Wu GL, Wang Y, Dai J, Fang CX (2011) Bacillus deserti sp. nov., a novel bacterium isolated from the desert of **njiang China. Antonie Van Leeuwenhoek 99:221–229. https://doi.org/10.1007/s10482-010-9479-4

    Article  Google Scholar 

  8. Cotta SR, Cadete LL, Van JD (2019) Exploring bacterial functionality in mangrove sediments and its capability to overcome anthropogenic activity. Mar Pollut Bull 141:586–594. https://doi.org/10.1016/j.marpolbul.2019.03.001

    Article  CAS  Google Scholar 

  9. Dong ZY, Narsing Rao MP, Wang HF, Fang BZ, Liu YH (2019) Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci Total Environ 686:107–117. https://doi.org/10.1016/j.scitotenv.2019.05.483

    Article  CAS  Google Scholar 

  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  Google Scholar 

  11. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  12. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  Google Scholar 

  13. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

    Article  Google Scholar 

  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  Google Scholar 

  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  Google Scholar 

  16. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  Google Scholar 

  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  Google Scholar 

  18. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127. https://doi.org/10.1007/BF00498806

    Article  Google Scholar 

  19. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  20. Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp. 21–41.

    Google Scholar 

  21. Chen YG, Cui XL, Pukall R, Li HM, Yang YL (2007) Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332. https://doi.org/10.1099/ijs.0.64783-0

    Article  CAS  Google Scholar 

  22. Narsing Rao MP, Dong ZY, Kan Y, Dong L, Li S, **ao M, Kang YQ, Zhang K, Li WJ (2020) Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 70:1977–1981. https://doi.org/10.1099/ijsem.0.004004

    Article  CAS  Google Scholar 

  23. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704. https://doi.org/10.1038/178703a0

    Article  CAS  Google Scholar 

  24. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230. https://doi.org/10.1099/00221287-100-2-221

    Article  CAS  Google Scholar 

  25. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367. https://doi.org/10.1080/01483918208067640

    Article  CAS  Google Scholar 

  26. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95. https://doi.org/10.1111/j.1365-2672.1979.tb01172.x

    Article  CAS  Google Scholar 

  27. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470. https://doi.org/10.1111/j.1365-2672.1980.tb01036.x

    Article  CAS  Google Scholar 

  28. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News 20:16

    Google Scholar 

  29. Li R, Li Y, Kristiansen K (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714. https://doi.org/10.1093/bioinformatics/btn025

    Article  CAS  Google Scholar 

  30. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:0955–0964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  Google Scholar 

  31. Lagesen K, Hallin P, Rødland EA (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  Google Scholar 

  32. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004. https://doi.org/10.1038/nbt.4229

    Article  CAS  Google Scholar 

  33. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  Google Scholar 

  34. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807. https://doi.org/10.1093/nar/gkab902

    Article  CAS  Google Scholar 

  35. Pal D, Mathan Kumar R, Kaur N, Kumar N, Kaur G (2017) Bacillus maritimus sp. nov., a novel member of the genus Bacillus isolated from marine sediment. Int J Syst Evol Microbiol 67:60–66. https://doi.org/10.1099/ijsem.0.001569

    Article  CAS  Google Scholar 

  36. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. https://doi.org/10.1099/ijs.0.059774-0

    Article  Google Scholar 

  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  Google Scholar 

  38. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  Google Scholar 

  39. Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. https://doi.org/10.4056/sigs.531120

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. Oren for his suggestion on nomenclature.

Funding

This work was financially supported by the National Natural Science Foundation of China (42007221 and GJYS202203).

Author information

Authors and Affiliations

Authors

Contributions

RT and SY carried out the experiments and wrote the manuscript. SH and C-J X performed genome analysis. G-M H provided samples. MPNR performed genome analysis and revised the manuscript. G-H L and S-G Z supervised the study.

Corresponding authors

Correspondence to Guo-Hong Liu or Shun-Gui Zhou.

Ethics declarations

Conflict of interest

The authors declared that they had no conflict of interest.

Ethical Approval

This article does not contain any studies related to human participants or animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9062 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R., Yang, S., Han, S. et al. Bacillus litorisediminis sp. nov., a Thermophilic Bacterium Isolated from Mangrove Sediment. Curr Microbiol 80, 79 (2023). https://doi.org/10.1007/s00284-023-03180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03180-9

Navigation