Log in

Anaerococcus faecalis sp. nov., Isolated from Swine Faeces

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An obligate anaerobic, Gram-stain-positive, non-spore forming, non-motile, catalase and oxidase-negative, coccoid-shaped bacterium designated AGMB00486T was isolated from swine faeces. The optimal growth of the isolate occurred at pH 8.0 and 37 ℃. Furthermore, the growth was observed in the presence of up to 4% (w/v) NaCl but not at salinity levels higher than 5%. The phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain AGMB00486T was a member of the genus Anaerococcus and that the isolate was most closely related to Anaerococcus vaginalis KCTC 15028T (96.7% 16S rRNA gene sequence similarity) followed by Anaerococcus hydrogenalis KCTC 15014T (96.7%) and Anaerococcus senegalensis KCTC 15435T (96.3%). Whole-genome sequence analysis determined that the DNA G+C content of strain AGMB00486T was 30.1 mol%, and the genome size, numbers of tRNA and rRNA genes were 2,268,866 bp, 47 and 8, respectively. The average nucleotide identity values between strain AGMB00486T and the three related type strains were 77.0, 77.4 and 77.2%, respectively. The major cellular fatty acids (> 10%) of strain AGMB00486T were C14:0, C16:0 and C16:0 DMA. Accordingly, these distinct phenotypic and phylogenetic properties revealed that strain AGMB00486T represents a novel species, for which the name Anaerococcus faecalis sp. nov. is proposed. The type strain is AGMB00486T (= KCTC 15945T = CCTCC AB 202009T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Honda K, Littman DR (2016) The microbiota in adaptive immune homeostasis and disease. Nature 535(7610):75–84. https://doi.org/10.1038/nature18848

    Article  CAS  PubMed  Google Scholar 

  2. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. ProcNatlAcadSci USA 104(34):13780–13785. https://doi.org/10.1073/pnas.0706625104

    Article  CAS  Google Scholar 

  3. Ramayo-Caldas Y, Mach N, Lepage P, Levenez F, Denis C, Lemonnier G, Leplat JJ, Billon Y, Berri M, Dore J, Rogel-Gaillard C, Estelle J (2016) Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J 10(12):2973–2977. https://doi.org/10.1038/ismej.2016.77

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ezaki T, Kawamura Y, Li N, Li ZY, Zhao L, Shu S (2001) Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov.andGallicola gen. nov.for members of the genus Peptostreptococcus. Int J SystEvolMicrobiol 51(Pt 4):1521–1528. https://doi.org/10.1099/00207713-51-4-1521

    Article  CAS  Google Scholar 

  5. Jain S, Bui V, Spencer C, Yee L (2008) Septic arthritis in a native joint due to Anaerococcus prevotii. J Clin Pathol 61(6):775. https://doi.org/10.1136/jcp.2007.053421

    Article  CAS  PubMed  Google Scholar 

  6. La Scola B, Fournier PE, Raoult D (2011) Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe 17(3):106–112. https://doi.org/10.1016/j.anaerobe.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  7. Murdoch DA (1998) Gram-positive anaerobic cocci. Clin Microbiol Rev 11(1):81–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pépin J, Deslandes S, Giroux G, Sobéla F, Khonde N, Diakité S, Demeule S, Labbé A-C, Carrier N, Frost E (2011) The complex vaginal flora of West African women with bacterial vaginosis. PLoS ONE 6(9):e25082–e25082. https://doi.org/10.1371/journal.pone.0025082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier PE (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64(Pt 2):384–391. https://doi.org/10.1099/ijs.0.057091-0

    Article  PubMed  Google Scholar 

  10. Song Y, Liu C, Finegold SM (2007) Peptoniphilus gorbachii sp. nov., Peptoniphilus olsenii sp. nov., and Anaerococcus murdochii sp. nov. isolated from clinical specimens of human origin. J ClinMicrobiol 45(6):1746–1752. https://doi.org/10.1128/JCM.00213-07

    Article  CAS  Google Scholar 

  11. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44(4):992–993. https://doi.org/10.1128/AEM.44.4.992-993.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sorokin DY (2005) Is there a limit for high-pH life? Int J Syst Evol Microbiol 55(Pt 4):1405–1406. https://doi.org/10.1099/ijs.0.63737-0

    Article  PubMed  Google Scholar 

  13. Kim JS, Lee KC, Suh MK, Han KI, Eom MK, Lee JH, Park SH, Kang SW, Park JE, Oh BS, Yu SY, Choi SH, Lee DH, Yoon H, Kim BY, Yang SJ, Lee JS (2019) Mediterraneibacter butyricigenes sp. nov., a butyrate-producing bacterium isolated from human faeces. J Microbiol 57(1):38–44. https://doi.org/10.1007/s12275-019-8550-8

    Article  CAS  PubMed  Google Scholar 

  14. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Meth 55(3):541–555. https://doi.org/10.1016/j.mimet.2003.08.009

    Article  CAS  Google Scholar 

  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. MolBiolEvol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  19. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI, Newark, pp 1–7

    Google Scholar 

  20. Wilson KH, Blitchington RB, Greene RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28(9):1942–1946. https://doi.org/10.1128/JCM.28.9.1942-1946.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(Pt 2):346–351. https://doi.org/10.1099/ijs.0.059774-0

    Article  PubMed  Google Scholar 

  22. Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Anaerococcus senegalensis sp. nov. Stand GenomSci 6(1):116–125. https://doi.org/10.4056/sigs.2415480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bio & Medical Technology Development Program (Project No. NRF-2019M3A9F3065226) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) of the Republic of Korea and a grant from the Korea Research Institute of Bioscience & Biotechnology (KRIBB) Research initiative program (KGM5232113).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [SYY and JHL], Data curation: [SYY], Funding acquisition: [JHL], Methodology: [BS, SWR, JSK and JSL], Software: [SHP, SWK and WYJ], Investigation: [SYY, JL, MKL, HC, HBK, JKK and JHL], Resources: [HJ and TYH], Writing—original draft preparation: [SYY], Writing—review and editing: [JHL].

Corresponding author

Correspondence to Ju Huck Lee.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 950 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S.Y., Oh, B.S., Ryu, S.W. et al. Anaerococcus faecalis sp. nov., Isolated from Swine Faeces. Curr Microbiol 78, 2589–2594 (2021). https://doi.org/10.1007/s00284-021-02497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02497-7

Navigation