Log in

TH9 cells in skin disorders

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Interleukin 9 secreting TH9 cells have been proposed as the latest addition to the family of T helper cell subsets. While a growing body of evidence from animal models points to important roles for these cells in allergic inflammation of the lung, autoinflammation of the gastrointestinal tract, and tumor immunity, their role in skin immunity and skin immunopathology remains poorly defined. Interestingly, studies of T helper cells from healthy humans suggest that TH9 cells are predominantly skin-homing and skin-resident and that they are involved in protection against extracellular pathogens. Thus, TH9 cells have entered the stage as potential mediators of cutaneous pathology. However, under which conditions and by which mechanisms these cells contribute to skin immunity and disease still has to be investigated. Here, we review our current understanding of TH9 cells as skin-tropic T helper cells and their involvement in skin pathology. Further, we discuss open questions with regard to the intricate nature of interleukin 9 producing T helper cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

C. albicans :

Candida albicans

CCR:

Chemokine receptor

CLA:

Cutaneous lymphocyte antigen

CTCL:

Cutaneous T cell lymphoma

DTH:

Delayed type hypersensitivity

IL-9:

Interleukin 9

ILC:

Innate lymphoid cells

IRF4:

IFN regulatory factor 4

MF:

Mycosis fungoides

PBMC:

Peripheral blood mononuclear cells

TH cells:

T helper cells

TLR:

Toll-like receptor

References

  1. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15(5):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schlapbach C, Gehad A, Yang C, Watanabe R, Guenova E et al (2014) Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med 6(219):219ra8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Licona-Limon P, Henao-Mejia J, Temann AU, Gagliani N, Licona-Limon I et al (2013) Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 39(4):744–757

    Article  CAS  PubMed  Google Scholar 

  4. Tan C, Aziz MK, Lovaas JD, Vistica BP, Shi G et al (2010) Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J Immunol 185(11):6795–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Richard AC, Tan C, Hawley ET, Gomez-Rodriguez J, Goswami R et al (2015) The TNF-family ligand TL1A and its receptor DR3 promote T cell-mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9-producing T cells. J Immunol 194(8):3567–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ying S, Meng Q, Kay AB, Robinson DS (2002) Elevated expression of interleukin-9 mRNA in the bronchial mucosa of atopic asthmatics and allergen-induced cutaneous late-phase reaction: relationships to eosinophils, mast cells and T lymphocytes. Clin Exp Allergy 32(6):866–871

    Article  CAS  PubMed  Google Scholar 

  7. Wilhelm C, Turner JE, Van Snick J, Stockinger B (2012) The many lives of IL-9: a question of survival? Nat Immunol 13(7):637–641

    Article  CAS  PubMed  Google Scholar 

  8. Vivier E, van de Pavert SA, Cooper MD, Belz GT (2016) The evolution of innate lymphoid cells. Nat Immunol 17(7):790–794

    Article  CAS  PubMed  Google Scholar 

  9. Schmitt E, Klein M, Bopp T (2014) Th9 cells, new players in adaptive immunity. Trends Immunol 35(2):61–68

    Article  CAS  PubMed  Google Scholar 

  10. Purwar R, Schlapbach C, **ao S, Kang HS, Elyaman W et al (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18(8):1248–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong MT, Ong DE, Lim FS, Teng KW, McGovern N et al (2016) A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45(2):442–456

    Article  CAS  PubMed  Google Scholar 

  12. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K et al (2006) The vast majority of CLA+ T cells are resident in normal skin. J Immunol 176(7):4431–4439

    Article  CAS  PubMed  Google Scholar 

  13. Nalleweg N, Chiriac MT, Podstawa E, Lehmann C, Rau TT et al (2015) IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 64(5):743–755

    Article  CAS  PubMed  Google Scholar 

  14. Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F et al (2012) Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484(7395):514–518

    Article  CAS  PubMed  Google Scholar 

  15. Netea MG, Marodi L (2010) Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol 31(9):346–353

    Article  CAS  PubMed  Google Scholar 

  16. Netea MG, Brown GD, Kullberg BJ, Gow NA (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6(1):67–78

    Article  CAS  PubMed  Google Scholar 

  17. Sehra S, Yao W, Nguyen ET, Glosson-Byers NL, Akhtar N et al (2015) TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol 136(2):433–440 e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen CY, Lee JB, Liu B, Ohta S, Wang PY et al (2015) Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43(4):788–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conti HR, Gaffen SL (2015) IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. J Immunol 195(3):780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alves de Medeiros AK, Lodewick E, Bogaert DJ, Haerynck F, Van Daele S et al (2016) Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol 36(3):204–209

    Article  PubMed  Google Scholar 

  21. Marehbian J, Arrighi HM, Hass S, Tian H, Sandborn WJ (2009) Adverse events associated with common therapy regimens for moderate-to-severe Crohn's disease. Am J Gastroenterol 104(10):2524–2533

    Article  PubMed  Google Scholar 

  22. Lopes JP, Stylianou M, Nilsson G, Urban CF (2015) Opportunistic pathogen Candida albicans elicits a temporal response in primary human mast cells. Sci Rep 5:12287

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nieto-Patlan A, Campillo-Navarro M, Rodriguez-Cortes O, Munoz-Cruz S, Wong-Baeza I et al (2015) Recognition of Candida albicans by Dectin-1 induces mast cell activation. Immunobiology 220(9):1093–1100

    Article  CAS  PubMed  Google Scholar 

  24. Trevisan E, Vita F, Medic N, Soranzo MR, Zabucchi G et al (2014) Mast cells kill Candida albicans in the extracellular environment but spare ingested fungi from death. Inflammation 37(6):2174–2189

    Article  CAS  PubMed  Google Scholar 

  25. Tsunemi Y, Kadono T, Saeki H, Kikuchi K, Tamaki K et al (2010) Secondary cutaneous candidiasis with eosinophilia. J Dermatol 37(2):175–178

    Article  PubMed  Google Scholar 

  26. Vultaggio A, Lombardelli L, Giudizi MG, Biagiotti R, Mazzinghi B et al (2008) T cells specific for Candida albicans antigens and producing type 2 cytokines in lesional mucosa of untreated HIV-infected patients with pseudomembranous oropharyngeal candidiasis. Microbes Infect 10(2):166–174

    Article  CAS  PubMed  Google Scholar 

  27. Louahed J, Zhou Y, Maloy WL, Rani PU, Weiss C et al (2001) Interleukin 9 promotes influx and local maturation of eosinophils. Blood 97(4):1035–1042

    Article  CAS  PubMed  Google Scholar 

  28. Gounni AS, Gregory B, Nutku E, Aris F, Latifa K et al (2000) Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 96(6):2163–2171

    CAS  PubMed  Google Scholar 

  29. Hong CH, Chang KL, Wang HJ, Yu HS, Lee CH (2015) IL-9 induces IL-8 production via STIM1 activation and ERK phosphorylation in epidermal keratinocytes: a plausible mechanism of IL-9R in atopic dermatitis. J Dermatol Sci 78(3):206–214

    Article  CAS  PubMed  Google Scholar 

  30. Erwig LP, Gow NA (2016) Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14(3):163–176

    Article  CAS  PubMed  Google Scholar 

  31. Jabeen R, Goswami R, Awe O, Kulkarni A, Nguyen ET et al (2013) Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest 123(11):4641–4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S et al (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33(2):192–202

    Article  CAS  PubMed  Google Scholar 

  33. Yao W, Zhang Y, Jabeen R, Nguyen ET, Wilkes DS et al (2013) Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 38(2):360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niedbala W, Besnard AG, Nascimento DC, Donate PB, Sonego F et al (2014) Nitric oxide enhances Th9 cell differentiation and airway inflammation. Nat Commun 5:4575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H et al (2014) TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 15(7):676–686

    Article  CAS  PubMed  Google Scholar 

  36. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT et al (2013) The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol 14(12):1294–1301

    Article  CAS  PubMed  Google Scholar 

  37. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA et al (2013) Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat Immunol 14(12):1285–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W et al (2008) IL-4 inhibits TGF-beta-induced Foxp 3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9(12):1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A et al (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe R, Gehad A, Yang C, Scott LL, Teague JE et al (2015) Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 7(279):279ra39

    Article  PubMed  PubMed Central  Google Scholar 

  41. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD et al (2010) TGF-beta induces IL-9 production from human Th17 cells. J Immunol 185(1):46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clark RA (2015) Resident memory T cells in human health and disease. Sci Transl Med 7(269):269rv1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gittler JK, Shemer A, Suarez-Farinas M, Fuentes-Duculan J, Gulewicz KJ et al (2012) Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 130(6):1344–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma L, Xue HB, Guan XH, Shu CM, Zhang JH et al (2014) Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis. Clin Exp Immunol 175(1):25–31

    Article  CAS  PubMed  Google Scholar 

  45. Ciprandi G, De Amici M, Giunta V, Marseglia A, Marseglia G (2013) Serum interleukin-9 levels are associated with clinical severity in children with atopic dermatitis. Pediatr Dermatol 30(2):222–225

    Article  PubMed  Google Scholar 

  46. Olivry, T., D. Mayhew, J.S. Paps, K.E. Linder, C. Peredo, et al., Early Activation of Th2/Th22 Inflammatory and Pruritogenic Pathways in Acute Canine Atopic Dermatitis Skin Lesions. J Invest Dermatol 2016.

  47. Namkung JH, Lee JE, Kim E, Park GT, Yang HS et al (2011) An association between IL-9 and IL-9 receptor gene polymorphisms and atopic dermatitis in a Korean population. J Dermatol Sci 62(1):16–21

    CAS  PubMed  Google Scholar 

  48. Gomez-Rodriguez J, Meylan F, Handon R, Hayes ET, Anderson SM et al (2016) Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun 7:10857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. von Bonin A, Rausch A, Mengel A, Hitchcock M, Kruger M et al (2011) Inhibition of the IL-2-inducible tyrosine kinase (Itk) activity: a new concept for the therapy of inflammatory skin diseases. Exp Dermatol 20(1):41–47

    Article  Google Scholar 

  50. Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S et al (2016) Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 138(2):336–349

    Article  CAS  PubMed  Google Scholar 

  51. Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M et al (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12(11):1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Simpson, E.L., T. Bieber, E. Guttman-Yassky, L.A. Beck, A. Blauvelt, et al., Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N Engl J Med, 2016.

  53. Singh TP, Schon MP, Wallbrecht K, Gruber-Wackernagel A, Wang XJ et al (2013) Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One 8(1):e51752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu J, Harberts E, Tammaro A, Girardi N, Filler RB et al (2014) IL-9 regulates allergen-specific Th1 responses in allergic contact dermatitis. J Invest Dermatol 134(7):1903–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gutin L, Tammaro A, Fishelevich R, Gaspari AA (2016) Elevation of IL-9 in extreme patch test reactions suggests it is an inflammatory mediator in allergic contact dermatitis. Dermatitis 27(1):35–36

    Article  PubMed  Google Scholar 

  56. Gulati N, Suarez-Farinas M, Fuentes-Duculan J, Gilleaudeau P, Sullivan-Whalen M et al (2014) Molecular characterization of human skin response to diphencyprone at peak and resolution phases: therapeutic insights. J Invest Dermatol 134(10):2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Coulter EM, Jenkinson C, Farrell J, Lavergne SN, Pease C et al (2010) Measurement of CD4+ and CD8+ T-lymphocyte cytokine secretion and gene expression changes in p-phenylenediamine allergic patients and tolerant individuals. J Invest Dermatol 130(1):161–174

    Article  CAS  PubMed  Google Scholar 

  58. Renauld JC, van der Lugt N, Vink A, van Roon M, Godfraind C et al (1994) Thymic lymphomas in interleukin 9 transgenic mice. Oncogene 9(5):1327–1332

    CAS  PubMed  Google Scholar 

  59. Lv X, Feng L, Fang X, Jiang Y, Wang X (2013) Overexpression of IL-9 receptor in diffuse large B-cell lymphoma. Int J Clin Exp Pathol 6(5):911–916

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lv X, Feng L, Ge X, Lu K, Wang X (2016) Interleukin-9 promotes cell survival and drug resistance in diffuse large B-cell lymphoma. J Exp Clin Cancer Res 35(1):106

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang J, Wang WD, Geng QR, Wang L, Chen XQ et al (2014) Serum levels of interleukin-9 correlate with negative prognostic factors in extranodal NK/T-cell lymphoma. PLoS One 9(4):e94637

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lange K, Uckert W, Blankenstein T, Nadrowitz R, Bittner C et al (2003) Overexpression of NPM-ALK induces different types of malignant lymphomas in IL-9 transgenic mice. Oncogene 22(4):517–527

    Article  CAS  PubMed  Google Scholar 

  63. Vieyra-Garcia PA, Wei T, Naym DG, Fredholm S, Fink-Puches R et al (2016) STAT3/5-dependent IL9 overexpression contributes to neoplastic cell survival in mycosis fungoides. Clin Cancer Res 22(13):3328–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu Y, Hong S, Li H, Park J, Hong B et al (2012) Th9 cells promote antitumor immune responses in vivo. J Clin Invest 122(11):4160–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vegran F, Berger H, Boidot R, Mignot G, Bruchard M et al (2014) The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol 15(8):758–766

    Article  CAS  PubMed  Google Scholar 

  66. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K et al (2015) The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol 16(10):1077–1084

    Article  CAS  PubMed  Google Scholar 

  67. Yanaba K, Yoshizaki A, Asano Y, Kadono T, Sato S (2011) Serum interleukin 9 levels are increased in patients with systemic sclerosis: association with lower frequency and severity of pulmonary fibrosis. J Rheumatol 38(10):2193–2197

    Article  CAS  PubMed  Google Scholar 

  68. Suarez-Farinas M, Ungar B, Noda S, Shroff A, Mansouri Y et al (2015) Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol 136(5):1277–1287

    Article  CAS  PubMed  Google Scholar 

  69. Weber, B., C. Schlapbach, M. Stuck, H.U. Simon, L. Borradori, et al. 2016 Distinct interferon-gamma and interleukin-9 expression in cutaneous and oral lichen planus. J Eur Acad Dermatol Venereol

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schlapbach.

Additional information

This article is a contribution to the special issue on Th9 Cells in Immunity and Immunopathological Diseases -- Guest Editors: Mark Kaplan and Markus Neurath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, R.A., Schlapbach, C. TH9 cells in skin disorders. Semin Immunopathol 39, 47–54 (2017). https://doi.org/10.1007/s00281-016-0607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0607-8

Keywords

Navigation