Log in

MCMV avoidance of recognition and control by NK cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells play an important role in virus control during infection. Many viruses have developed mechanisms for subversion of NK cell responses. Murine cytomegalovirus (MCMV) is exceptionally successful in avoiding NK cell control. Here, we summarize the major MCMV evasion mechanisms targeting NK cell functions and their role in viral pathogenesis. The mechanisms by which NK cells regulate CD8+ T cell response, particularly with respect to the role of NK cell receptors recognizing viral antigens, are discussed. In addition, we discuss the role of NK cell receptors in generation and maintenance of memory NK cells. Final part of this review illustrates how the NK cell response and its viral regulation can be exploited in designing recombinant viral vectors able to induce robust and protective CD8+ T cell response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320(26):1731–1735

    Article  PubMed  CAS  Google Scholar 

  2. Loh J, Chu DT, O'Guin AK et al (2005) Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol 79(1):661–667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Miletic A, Krmpotic A, Jonjic S (2013) The evolutionary arms race between NK cells and viruses: who gets the short end of the stick? Eur J Immunol 43(4):867–877

    Article  PubMed  CAS  Google Scholar 

  4. Pyzik M, Gendron-Pontbriand EM, Fodil-Cornu N et al (2011) Self or nonself? That is the question: sensing of cytomegalovirus infection by innate immune receptors. Mamm Genome 22(1–2):6–18

    Article  PubMed  CAS  Google Scholar 

  5. Vidal S, Krmpotic A, Pyzik M et al (2013) Innate Immunity to Cytomegalovirus in the Murine Model. In: Reddehase MJ (ed) Cytomegaloviruses From Molecular Pathogenesis to Intervention. Caister Academic Press, Norfolk

    Google Scholar 

  6. Carayannopoulos LN, Yokoyama WM (2004) Recognition of infected cells by natural killer cells. Curr Opin Immunol 16(1):26–33

    Article  PubMed  CAS  Google Scholar 

  7. Chan CJ, Martinet L, Gilfillan S et al (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15(5):431–438

    Article  PubMed  CAS  Google Scholar 

  8. Cannons JL, Tangye SG, Schwartzberg PL (2011) SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol 29:665–705

    Article  PubMed  CAS  Google Scholar 

  9. Horowitz A, Strauss-Albee DM, Leipold M et al (2013) Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 5(208):208ra145

    Article  PubMed  Google Scholar 

  10. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3(10):781–790

    Article  PubMed  CAS  Google Scholar 

  11. Nice TJ, Deng W, Coscoy L et al (2010) Stress-regulated targeting of the NKG2D ligand Mult1 by a membrane-associated RING-CH family E3 ligase. J Immunol 185(9):5369–5376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Lenac T, Budt M, Arapovic J et al (2006) The herpesviral Fc receptor fcr-1 down-regulates the NKG2D ligands MULT-1 and H60. J Exp Med 203(8):1843–1850

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Krmpotic A, Hasan M, Loewendorf A et al (2005) NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 201(2):211–220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Jonjic S, Babic M, Polic B et al (2008) Immune evasion of natural killer cells by viruses. Curr Opin Immunol 20(1):30–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Takada A, Yoshida S, Kajikawa M et al (2008) Two novel NKG2D ligands of the mouse H60 family with differential expression patterns and binding affinities to NKG2D. J Immunol 180(3):1678–1685

    Article  PubMed  CAS  Google Scholar 

  16. Diefenbach A, Jamieson AM, Liu SD et al (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1(2):119–126

    Article  PubMed  CAS  Google Scholar 

  17. Lodoen MB, Abenes G, Umamoto S et al (2004) The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med 200(8):1075–1081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Hasan M, Krmpotic A, Ruzsics Z et al (2005) Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J Virol 79(5):2920–2930

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Loewendorf AI, Steinbrueck L, Peter C et al (2011) The mouse cytomegalovirus glycoprotein m155 inhibits CD40 expression and restricts CD4 T cell responses. J Virol 85(10):5208–5212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Lodoen M, Ogasawara K, Hamerman JA et al (2003) NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 197(10):1245–1253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Tokuyama M, Lorin C, Delebecque F et al (2011) Expression of the RAE-1 family of stimulatory NK-cell ligands requires activation of the PI3K pathway during viral infection and transformation. PLoS Pathog 7(9):e1002265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Krmpotic A, Busch DH, Bubic I et al (2002) MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3(6):529–535

    Article  PubMed  CAS  Google Scholar 

  23. Ziegler H, Thale R, Lucin P et al (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6(1):57–66

    Article  PubMed  CAS  Google Scholar 

  24. Arapovic J, Lenac T, Antulov R et al (2009) Differential susceptibility of RAE-1 isoforms to mouse cytomegalovirus. J Virol 83(16):8198–8207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zhi L, Mans J, Paskow MJ et al (2010) Direct interaction of the mouse cytomegalovirus m152/gp40 immunoevasin with RAE-1 isoforms. Biochemistry 49(11):2443–2453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Wang R, Natarajan K, Revilleza MJ et al (2012) Structural basis of mouse cytomegalovirus m152/gp40 interaction with RAE1gamma reveals a paradigm for MHC/MHC interaction in immune evasion. Proc Natl Acad Sci U S A 109(51):E3578–E3587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Moretta A, Biassoni R, Bottino C et al (2000) Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol Today 21(5):228–234

    Article  PubMed  CAS  Google Scholar 

  28. Kruse PH, Matta J, Ugolini S et al (2014) Natural cytotoxicity receptors and their ligands. Immunol Cell Biol 92(3):221–229

    Article  PubMed  CAS  Google Scholar 

  29. Gazit R, Gruda R, Elboim M et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7(5):517–523

    Article  PubMed  CAS  Google Scholar 

  30. Narni-Mancinelli E, Jaeger BN, Bernat C et al (2012) Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science 335(6066):344–348

    Article  PubMed  CAS  Google Scholar 

  31. Stanietsky N, Mandelboim O (2010) Paired NK cell receptors controlling NK cytotoxicity. FEBS Lett 584(24):4895–4900

    Article  PubMed  CAS  Google Scholar 

  32. Stanietsky N, Rovis TL, Glasner A et al (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43(8):2138–2150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Tomasec P, Wang EC, Davison AJ et al (2005) Downregulation of natural killer cellactivating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 6(2):181–188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Nabekura T, Kanaya M, Shibuya A et al (2014) Costimulatory Molecule DNAM-1 Is Essential for Optimal Differentiation of Memory Natural Killer Cells during Mouse Cytomegalovirus Infection. Immunity 40(2):225–234

    Article  PubMed  CAS  Google Scholar 

  35. Engel P, Perez-Carmona N, Alba MM et al (2011) Human cytomegalovirus UL7, a homologue of the SLAM-family receptor CD229, impairs cytokine production. Immunol Cell Biol 89(7):753–766

    Article  PubMed  CAS  Google Scholar 

  36. Romo N, Magri G, Muntasell A et al (2011) Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization. J Leukoc Biol 90(4):717–726

    Article  PubMed  CAS  Google Scholar 

  37. Zarama A, Perez-Carmona N, Farre D et al (2014) Cytomegalovirus m154 hinders CD48 cellsurface expression and promotes viral escape from host natural killer cell control. PLoS Pathog 10(3):e1004000

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chlewicki LK, Velikovsky CA, Balakrishnan V et al (2008) Molecular basis of the dual functions of 2B4 (CD244). J Immunol 180(12):8159–8167

    Article  PubMed  CAS  Google Scholar 

  39. Hengel H, Reusch U, Gutermann A et al (1999) Cytomegaloviral control of MHC class I function in the mouse. Immunol Rev 168:167–176

    Article  PubMed  CAS  Google Scholar 

  40. Kleijnen MF, Huppa JB, Lucin P et al (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16(4):685–694

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Arase H, Mocarski ES, Campbell AE et al (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296(5571):1323–1326

    Article  PubMed  CAS  Google Scholar 

  42. Corbett AJ, Coudert JD, Forbes CA et al (2011) Functional consequences of natural sequence variation of murine cytomegalovirus m157 for Ly49 receptor specificity and NK cell activation. J Immunol 186(3):1713–1722

    Article  PubMed  CAS  Google Scholar 

  43. Farrell HE, Vally H, Lynch DM et al (1997) Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386(6624):510–514

    Article  PubMed  CAS  Google Scholar 

  44. Forbes CA, Scalzo AA, Degli-Esposti MA et al (2014) Ly49C-Dependent Control of MCMV Infection by NK Cells Is Cis-Regulated by MHC Class I Molecules. PLoS Pathog 10(5):e1004161

    Article  PubMed  PubMed Central  Google Scholar 

  45. Smith HR, Heusel JW, Mehta IK et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99(13):8826–8831

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. French AR, **el JT, Wagner M et al (2004) Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20(6):747–756

    Article  PubMed  CAS  Google Scholar 

  47. Voigt V, Forbes CA, Tonkin JN et al (2003) Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci U S A 100(23):13483–13488

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Berry R, Ng N, Saunders PM et al (2013) Targeting of a natural killer cell receptor family by a viral immunoevasin. Nat Immunol 14(7):699–705

    Article  PubMed  CAS  Google Scholar 

  49. Romasanta PN, Curto LM, Urtasun N et al (2014) A positive cooperativity binding model between Ly49 natural killer cell receptors and the viral immunoevasin m157: kinetic and thermodynamic studies. J Biol Chem 289(8):5083–5096

    Article  PubMed  CAS  Google Scholar 

  50. Carlin LE, Guseva NV, Shey MR et al (2013) The Glycophosphatidylinositol Anchor of the MCMV Evasin, m157, Facilitates Optimal Cell Surface Expression and Ly49 Receptor Recognition. PLoS One 8(6):e67295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Desrosiers MP, Kielczewska A, Loredo-Osti JC et al (2005) Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat Genet 37(6):593–599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Kielczewska A, Pyzik M, Sun T et al (2009) Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J Exp Med 206(3):515–523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. **e X, Stadnisky MD, Brown MG (2009) MHC class I Dk locus and Ly49G2+ NK cells confer H-2 k resistance to murine cytomegalovirus. J Immunol 182(11):7163–7171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Stadnisky MD, **e X, Coats ER et al (2011) Self MHC class I-licensed NK cells enhance adaptive CD8 T-cell viral immunity. Blood 117(19):5133–5141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Mans J, Zhi L, Revilleza MJ et al (2009) Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage. Immunol Res 43(1–3):264–279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Revilleza MJ, Wang R, Mans J et al (2011) How the virus outsmarts the host: function and structure of cytomegalovirus MHC-I-like molecules in the evasion of natural killer cell surveillance. J Biomed Biotechnol 2011:724607

    Article  PubMed  PubMed Central  Google Scholar 

  57. O'Leary JG, Goodarzi M, Drayton DL et al (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7(5):507–516

    Article  PubMed  Google Scholar 

  58. Cooper MA, Elliott JM, Keyel PA et al (2009) Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci U S A 106(6):1915–1919

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457(7229):557–561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Lopez-Verges S, Milush JM, Schwartz BS et al (2011) Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci U S A 108(36):14725–14732

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Sun JC, Madera S, Bezman NA et al (2012) Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J Exp Med 209(5):947–954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Min-Oo G, Bezman NA, Madera S et al. (2014) Proapoptotic Bim regulates antigen-specific NK cell contraction and the generation of the memory NK cell pool after cytomegalovirus infection. J Exp Med

  63. Foley B, Cooley S, Verneris MR et al (2012) Human cytomegalovirus (CMV)-induced memory-like NKG2C(+) NK cells are transplantable and expand in vivo in response to recipient CMV antigen. J Immunol 189(10):5082–5088

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Min-Oo G, Kamimura Y, Hendricks DW et al (2013) Natural killer cells: walking three paths down memory lane. Trends Immunol 34(6):251–258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Hendricks DW, Balfour HH Jr, Dunmire SK et al (2014) Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J Immunol 192(10):4492–4496

    Article  PubMed  CAS  Google Scholar 

  66. Zhang T, Scott JM, Hwang I et al (2013) Cutting edge: antibody-dependent memory-like NK cells distinguished by FcRgamma deficiency. J Immunol 190(4):1402–1406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Wu Z, Sinzger C, Frascaroli G et al (2013) Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity. J Virol 87(13):7717–7725

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Holtappels R, Pahl-Seibert MF, Thomas D et al (2000) Enrichment of immediate-early 1 (m123/pp 89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74(24):11495–11503

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Ni J, Miller M, Stojanovic A et al (2012) Sustained effector function of IL-12/15/18- preactivated NK cells against established tumors. J Exp Med 209(13):2351–2365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Romee R, Schneider SE, Leong JW et al (2012) Cytokine activation induces human memorylike NK cells. Blood 120(24):4751–4760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Lee SH, Fragoso MF, Biron CA (2012) Cutting edge: a novel mechanism bridging innate and adaptive immunity: IL-12 induction of CD25 to form high-affinity IL-2 receptors on NK cells. J Immunol 189(6):2712–2716

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Paust S, Gill HS, Wang BZ et al (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 11(12):1127–U128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Majewska-Szczepanik M, Paust S, von Andrian UH et al (2013) Natural killer cell-mediated contact sensitivity develops rapidly and depends on interferon-alpha, interferon-gamma and interleukin-12. Immunology 140(1):98–110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Peng H, Jiang X, Chen Y et al (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123(4):1444–1456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Dong J, Chang HD, Ivascu C et al (2013) Loss of methylation at the IFNG promoter and CNS-1 is associated with the development of functional IFN-gamma memory in human CD4(+) T lymphocytes. Eur J Immunol 43(3):793–804

    Article  PubMed  CAS  Google Scholar 

  76. Thomas M, Reuter N, Stamminger T (2013) Multiafected Regulation of Human Cytomegalovirus Gene Expression. In: Reddehase MJ (ed) Cytomegaloviruses From Molecular Pathogenesis to Intervention. Caister Academic Press, Norfolk, pp 174–195

    Google Scholar 

  77. Achour A, Baychelier F, Besson C et al (2014) Expansion of CMV-mediated NKG2C + NK cells associates with the development of specific de novo malignancies in liver-transplanted patients. J Immunol 192(1):503–511

    Article  PubMed  CAS  Google Scholar 

  78. Mitrovic M, Arapovic J, Jordan S et al (2012) The NK cell response to mouse cytomegalovirus infection affects the level and kinetics of the early CD8(+) T-cell response. J Virol 86(4):2165–2175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Andrews DM, Estcourt MJ, Andoniou CE et al (2010) Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J Exp Med 207(6):1333–1343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Robbins SH, Bessou G, Cornillon A et al (2007) Natural killer cells promote early CD8 T cell responses against cytomegalovirus. PLoS Pathog 3(8):e123

    Article  PubMed  PubMed Central  Google Scholar 

  81. Su HC, Nguyen KB, Salazar-Mather TP et al (2001) NK cell functions restrain T cell responses during viral infections. Eur J Immunol 31(10):3048–3055

    Article  PubMed  CAS  Google Scholar 

  82. Waggoner SN, Cornberg M, Selin LK et al (2012) Natural killer cells act as rheostats modulating antiviral T cells. Nature 481(7381):394–398

    CAS  Google Scholar 

  83. Crouse J, Bedenikovic G, Wiesel M et al (2014) Type I Interferons Protect T Cells against NK Cell Attack Mediated by the Activating Receptor NCR1. Immunity 40(6):961–973

    Article  PubMed  CAS  Google Scholar 

  84. Xu HC, Grusdat M, Pandyra AA et al (2014) Type I interferon protects antiviral CD8(+) T cells from NK cell cytotoxicity. Immunity 40(6):949–960

    Article  PubMed  CAS  Google Scholar 

  85. Andrews DM, Scalzo AA, Yokoyama WM et al (2003) Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 4(2):175–181

    Article  PubMed  CAS  Google Scholar 

  86. Lee SH, Kim KS, Fodil-Cornu N et al (2009) Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J Exp Med 206(10):2235–2251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Mandaric S, Walton SM, Rulicke T et al (2012) IL-10 suppression of NK/DC crosstalk leads to poor priming of MCMV-specific CD4 T cells and prolonged MCMV persistence. PLoS Pathog 8(8):e1002846

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Daley-Bauer LP, Roback LJ, Wynn GM et al (2014) Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. Cell Host Microbe 15(3):351–362

    Article  PubMed  CAS  Google Scholar 

  89. Lang PA, Lang KS, Xu HC et al (2012) Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci U S A 109(4):1210–1215

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Hansen SG, Sacha JB, Hughes CM et al (2013) Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340(6135):1237874

    Article  PubMed  Google Scholar 

  91. Diefenbach A, Jensen ER, Jamieson AM et al (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413(6852):165–171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Slavuljica I, Busche A, Babic M et al (2010) Recombinant mouse cytomegalovirus expressing a ligand for the NKG2D receptor is attenuated and has improved vaccine properties. J Clin Invest 120(12):4532–4545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Trsan T, Busche A, Abram M et al (2013) Superior induction and maintenance of protective CD8 T cells in mice infected with mouse cytomegalovirus vector expressing RAE-1gamma. Proc Natl Acad Sci U S A 110(41):16550–16555

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Mohr CA, Arapovic J, Muhlbach H et al (2010) A spread-deficient cytomegalovirus for assessment of first-target cells in vaccination. J Virol 84(15):7730–7742

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Cicin-Sain L, Bubic I, Schnee M et al (2007) Targeted deletion of regions rich in immuneevasive genes from the cytomegalovirus genome as a novel vaccine strategy. J Virol 81(24):13825–13834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Juranic Lisnic V, Babic Cac M, Lisnic B et al (2013) Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface. PLoS Pathog 9(9):e1003611

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stern-Ginossar N, Weisburd B, Michalski A et al (2012) Decoding human cytomegalovirus. Science 338(6110):1088–1093

    Article  PubMed  CAS  Google Scholar 

  98. Tsuda Y, Caposio P, Parkins CJ et al (2011) A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus. PLoS Negl Trop Dis 5(8):e1275

Download references

Acknowledgments

We apologize to our colleagues whose work was not cited due to space limitations. Stipan Jonjić is supported by the European Research Council (ERC) Advanced Grant (Grant number: 322693). This work has been supported in part by Croatian Science Foundation under the projects 1533 and 7132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stipan Jonjić.

Additional information

This article is a contribution to the special issue on Immune Modulation, properties and models of CMV - Guest Editor: Ofer Mandelboim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brizić, I., Lenac Roviš, T., Krmpotić, A. et al. MCMV avoidance of recognition and control by NK cells. Semin Immunopathol 36, 641–650 (2014). https://doi.org/10.1007/s00281-014-0441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0441-9

Keywords

Navigation