Log in

Identification of prognostic genes in the pancreatic adenocarcinoma immune microenvironment by integrated bioinformatics analysis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic adenocarcinoma (PAAD) is one of the most common causes of death among solid tumors, and its pathogenesis remains to be clarified. This study aims to elucidate the value of immune/stromal-related genes in the prognosis of PAAD through comprehensive bioinformatics analysis based on the immune microenvironment and validated in Chinese pancreatic cancer patients.

Methods

Gene expression profiles of pancreatic cancer patients were obtained from TCGA database. Differentially expressed genes (DEGs) were identified based on the ESTIMATE algorithm. Gene co-expression networks were constructed using WGCNA. In the key module, survival analysis was used to reveal the prognostic value. Subsequently, we performed functional enrichment analysis to construct a protein–protein interaction (PPI) network. The relationship between tumor immune infiltration and hub genes was analyzed by TIMER and CIBERSORT. Finally, it was validated in the GEO database and in tissues of Chinese pancreatic cancer patients.

Results

In the TCGA pancreatic cancer cohort, a low immune/stromal score was associated with a good prognosis. After bioinformatic analysis, 57 genes were identified to be significantly associated with pancreatic cancer prognosis. Among them, up-regulation of four genes (COL6A3, PLAU, MMP11 and MMP14) indicated poor prognosis and was associated with multiple immune cell infiltration. IHC results showed that PLAU protein levels from Chinese pancreatic cancer tissues were significantly higher than those from adjacent non-tumor tissues and were also associated with tumor TNM stage and lymph node metastasis.

Conclusion

In conclusion, this study demonstrates that PLAU may serve as a new diagnostic and therapeutic target, which is highly expressed in Chinese pancreatic cancer tissues and associated with lymph node metastasis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study. This data can be found here: https://portal.gdc.cancer.gov/ and https://www.ncbi.nlm.nih.gov/geo/.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Mizrahi JD, Surana R, Valle JW, Shroff RT (2020) Pancreatic cancer. The Lancet 395:2008–2020. https://doi.org/10.1016/s0140-6736(20)30974-0

    Article  CAS  Google Scholar 

  3. Carpenter ES, Steele NG, Pasca di Magliano M (2020) Targeting the microenvironment to overcome gemcitabine resistance in pancreatic cancer. Cancer Res 80:3070–3071. https://doi.org/10.1158/0008-5472.Can-20-1692

    Article  CAS  PubMed  Google Scholar 

  4. Sherman MH, Yu RT, Engle DD et al (2014) Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159:80–93. https://doi.org/10.1016/j.cell.2014.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ware MB, El-Rayes BF, Lesinski GB (2020) Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer. J Immunother Cancer 8:e001100. https://doi.org/10.1136/jitc-2020-001100

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ren B, Cui M, Yang G, Wang H, Feng M, You L, Zhao Y (2018) Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer 17:108. https://doi.org/10.1186/s12943-018-0858-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA (2012) The pancreas cancer microenvironment. Clin Cancer Res 18:4266–4276. https://doi.org/10.1158/1078-0432.CCR-11-3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang H, Li M, Kaboli PJ et al (2021) Identification of cluster of differentiation molecule-associated microRNAs as potential therapeutic targets for gastrointestinal cancer immunotherapy. Int J Biol Markers 36:22–32. https://doi.org/10.1177/17246008211005473

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Q, Jiang Y, **ang S et al (2021) Engineered TCR-T Cell Immunotherapy in anticancer precision medicine: pros and cons. Front Immunol 12:658753. https://doi.org/10.3389/fimmu.2021.658753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Looi CK, Chung FF, Leong CO, Wong SF, Rosli R, Mai CW (2019) Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res 38:162. https://doi.org/10.1186/s13046-019-1153-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leinwand J, Miller G (2020) Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 21:1152–1159. https://doi.org/10.1038/s41590-020-0761-y

    Article  CAS  PubMed  Google Scholar 

  12. Yoshihara K, Shahmoradgoli M, Martinez E et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  13. Yan H, Qu J, Cao W, Liu Y, Zheng G, Zhang E, Cai Z (2019) Identification of prognostic genes in the acute myeloid leukemia immune microenvironment based on TCGA data analysis. Cancer Immunol Immunother CII 68:1971–1978. https://doi.org/10.1007/s00262-019-02408-7

    Article  CAS  PubMed  Google Scholar 

  14. Zhou L, Huang W, Yu H, Feng Y, Teng X (2020) Exploring TCGA database for identification of potential prognostic genes in stomach adenocarcinoma. Cancer Cell Int 20:264. https://doi.org/10.1186/s12935-020-01351-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. **ang S, Li J, Shen J et al (2021) Identification of Prognostic Genes in the Tumor Microenvironment of Hepatocellular Carcinoma. Front Immunol 12:653836. https://doi.org/10.3389/fimmu.2021.653836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucl Acids Res 43:D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  CAS  PubMed  Google Scholar 

  17. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. https://doi.org/10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hegde S, Krisnawan VE, Herzog BH et al (2020) Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37:289–307. https://doi.org/10.1016/j.ccell.2020.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Honselmann KC, Finetti P, Birnbaum DJ et al (2020) Neoplastic-stromal cell crosstalk regulates matrisome expression in pancreatic cancer. Mol Cancer Res 18:1889–1902. https://doi.org/10.1158/1541-7786.MCR-20-0439

    Article  CAS  PubMed  Google Scholar 

  22. Incio J, Liu H, Suboj P et al (2016) Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov 6:852–869. https://doi.org/10.1158/2159-8290.CD-15-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neesse A, Frese KK, Bapiro TE et al (2013) CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci U S A 110:12325–12330. https://doi.org/10.1073/pnas.1300415110

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, Ji B, Evans DB, Logsdon CD (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68:918–926. https://doi.org/10.1158/0008-5472.CAN-07-5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng H, Fan K, Luo G et al (2019) Kras mutation contributes to regulatory T cell conversion through activation of the MEK/ERK pathway in pancreatic cancer. Cancer Lett 446:103–111. https://doi.org/10.1016/j.canlet.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  26. Trovato R, Fiore A, Sartori S et al (2019) Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 7:255. https://doi.org/10.1186/s40425-019-0734-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barilla R, Diskin B, Caso R et al (2019) Specialized dendritic cells induce tumor-promoting IL-10IL-17 FoxP3 regulatory CD4 T cells in pancreatic carcinoma. Nat Commun 10:1424. https://doi.org/10.1038/s41467-019-09416-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan K, Yang C, Fan Z et al (2018) MUC16 C terminal-induced secretion of tumor-derived IL-6 contributes to tumor-associated Treg enrichment in pancreatic cancer. Cancer Lett 418:167–175. https://doi.org/10.1016/j.canlet.2018.01.017

    Article  CAS  PubMed  Google Scholar 

  29. Rucki A, Foley K, Zhang P et al (2017) Heterogeneous stromal signaling within the tumor microenvironment controls the metastasis of pancreatic cancer. Cancer Res 77:41–52. https://doi.org/10.1158/0008-5472.Can-16-1383

    Article  CAS  PubMed  Google Scholar 

  30. Heeg S, Das KK, Reichert M et al (2016) ETS-transcription factor ETV1 regulates stromal expansion and metastasis in pancreatic cancer. Gastroenterology 151(540–53):e14. https://doi.org/10.1053/j.gastro.2016.06.005

    Article  CAS  Google Scholar 

  31. Krishnamoorthy M, Lenehan J, Burton J, Maleki Vareki S (2020) Immunomodulation in pancreatic cancer. Cancers (Basel) 12:3340. https://doi.org/10.3390/cancers12113340

    Article  CAS  Google Scholar 

  32. Shi H, Fang W, Liu M, Fu D (2017) Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling. Int J Cancer 141:1389–1401. https://doi.org/10.1002/ijc.30831

    Article  CAS  PubMed  Google Scholar 

  33. Bulle A, Lim K (2020) Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduct Target Ther 5:249. https://doi.org/10.1038/s41392-020-00341-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sakamoto H, Attiyeh M, Gerold J et al (2020) The evolutionary origins of recurrent pancreatic cancer. Cancer Discov 10:792–805. https://doi.org/10.1158/2159-8290.Cd-19-1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han X, Zhang W, Wang W, Yu X, Liu L (2020) Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: present situation, predicaments, and perspectives. Biochimica et biophysica acta. Rev Cancer 1874:188444. https://doi.org/10.1016/j.bbcan.2020.188444

    Article  CAS  Google Scholar 

  36. Yu M, Tannock I (2012) Targeting tumor architecture to favor drug penetration: a new weapon to combat chemoresistance in pancreatic cancer? Cancer Cell 21:327–329. https://doi.org/10.1016/j.ccr.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  37. Tan X, Sivakumar S, Bednarsch J et al (2020) Nerve fibers in the tumor microenvironment in neurotropic cancer-pancreatic cancer and cholangiocarcinoma. Oncogene 40:899–908. https://doi.org/10.1038/s41388-020-01578-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zahalka A, Frenette P (2020) Nerves in cancer. Nat Rev Cancer 20:143–157. https://doi.org/10.1038/s41568-019-0237-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Preston M, Sherman L (2011) Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci (Schol Ed) 3:1165–1179. https://doi.org/10.2741/218

    Article  Google Scholar 

  40. Gritsenko P, Ilina O, Friedl P (2012) Interstitial guidance of cancer invasion. J Pathol 226:185–199. https://doi.org/10.1002/path.3031

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Huang S, Guo J, Zhou L, You L, Zhang T, Zhao Y (2016) Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). Int J Oncol 48:1783–1793. https://doi.org/10.3892/ijo.2016.3400

    Article  CAS  PubMed  Google Scholar 

  42. Jones L, Humphreys M, Campbell F, Neoptolemos J, Boyd M (2004) Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res An Off J Am Assoc Cancer Res 10:2832–2845. https://doi.org/10.1158/1078-0432.ccr-1157-03

    Article  CAS  Google Scholar 

  43. Zhang X, Lu J, Zhou L, You L, Liang Z, Guo J, Zhao Y (2020) Matrix metalloproteinase 11 as a novel tumor promoter and diagnostic and prognostic biomarker for pancreatic ductal adenocarcinoma. Pancreas 49:812–821. https://doi.org/10.1097/mpa.0000000000001583

    Article  CAS  PubMed  Google Scholar 

  44. Haage A, Nam D, Ge X, Schneider I (2014) Matrix metalloproteinase-14 is a mechanically regulated activator of secreted MMPs and invasion. Biochem Biophys Res Commun 450:213–218. https://doi.org/10.1016/j.bbrc.2014.05.086

    Article  CAS  PubMed  Google Scholar 

  45. Arafat H, Lazar M, Salem K, Chipitsyna G, Gong Q, Pan T, Zhang R, Yeo C, Chu M (2011) Tumor-specific expression and alternative splicing of the COL6A3 gene in pancreatic cancer. Surgery 150:306–315. https://doi.org/10.1016/j.surg.2011.05.011

    Article  PubMed  Google Scholar 

  46. Lamandé S, Bateman J (2018) Collagen VI disorders: insights on form and function in the extracellular matrix and beyond. Matrix Biol 71–72:348–367. https://doi.org/10.1016/j.matbio.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  47. Svoronos C, Tsoulfas G, Souvatzi M, Chatzitheoklitos E (2020) Prognostic value of COL6A3 in pancreatic adenocarcinoma. Ann Hepatobiliary Pancreat Surg 24:52–56

    Article  Google Scholar 

  48. Sherman-Baust C, Weeraratna A, Rangel L, Pizer E, Cho K, Schwartz D, Shock T, Morin P (2003) Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 3:377–386. https://doi.org/10.1016/s1535-6108(03)00058-8

    Article  CAS  PubMed  Google Scholar 

  49. Park J, Morley T, Scherer P (2013) Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol Med 5:935–948. https://doi.org/10.1002/emmm.201202006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Banys-Paluchowski M, Witzel I, Aktas B et al (2019) The prognostic relevance of urokinase-type plasminogen activator (uPA) in the blood of patients with metastatic breast cancer. Sci Rep 9:2318. https://doi.org/10.1038/s41598-018-37259-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ai C, Zhang J, Lian S, Ma J, Győrffy B, Qian Z, Han Y, Feng Q (2020) FOXM1 functions collaboratively with PLAU to promote gastric cancer progression. J Cancer 11:788–794. https://doi.org/10.7150/jca.37323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moquet-Torcy G, Tolza C, Piechaczyk M, Jariel-Encontre I (2014) Transcriptional complexity and roles of Fra-1/AP-1 at the uPA/Plau locus in aggressive breast cancer. Nucl Acids Res 42:11011–11024. https://doi.org/10.1093/nar/gku814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dikshit B, Irshad K, Madan E et al (2013) FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene 32:3798–3808. https://doi.org/10.1038/onc.2012.393

    Article  CAS  PubMed  Google Scholar 

  54. Li X, Rawat K, Jakubzick CV (2021) Targeting resident macrophages in cancer. Nat Immunol 22:1078–1079. https://doi.org/10.1038/s41590-021-01002-3

    Article  CAS  PubMed  Google Scholar 

  55. Cui D, Yuan W, Chen C, Han R (2021) Identification of colorectal cancer-associated macrophage biomarkers by integrated bioinformatic analysis. Int J Clin Exp Pathol 14:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fang L, Che Y, Zhang C, Huang J, Lei Y, Lu Z, Sun N, He J (2021) PLAU directs conversion of fibroblasts to inflammatory cancer-associated fibroblasts, promoting esophageal squamous cell carcinoma progression via uPAR/Akt/NF-κB/IL8 pathway. Cell Death Discov 7:32. https://doi.org/10.1038/s41420-021-00410-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He F, Chen H, Probst-Kepper M, Geffers R, Eifes S, Del Sol A, Schughart K, Zeng A-P, Balling R (2012) PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells. Mol Syst Biol 8:624. https://doi.org/10.1038/msb.2012.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grants 81570537 and 81974074 to Y.C).

Author information

Authors and Affiliations

Authors

Contributions

HW and YC contributed to conceptualization; LL and HW provided methodology; LL and HW performed formal analysis and writing. HW and XL performed writing—review and editing; YC contributed to funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yongheng Chen.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical standards

All datasets are freely available as public resources. Therefore, local ethics approval was not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Lu, L., Liang, X. et al. Identification of prognostic genes in the pancreatic adenocarcinoma immune microenvironment by integrated bioinformatics analysis. Cancer Immunol Immunother 71, 1757–1769 (2022). https://doi.org/10.1007/s00262-021-03110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03110-3

Keywords

Navigation