Log in

A gene expression-based immune signature for lung adenocarcinoma prognosis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Lung adenocarcinoma (LUAD) has become the most frequent histologic type of lung cancer in the past several decades. Recent successes with immune checkpoint blockade therapy have demonstrated that the manipulation of the immune system is a very potent treatment for LUAD. This study aims to explore the role of immune-related genes in the development of LUAD and establish a signature that can predict overall survival for LUAD patients.

Methods

To identify the differential expression genes (DEGs) between normal and tumor tissues, we developed an analysis strategy to combine an independent-sample design and a paired-sample design using RNA-seq transcriptomic profiling data of The Cancer Genome Atlas LUAD samples. Further, we selected prognostic markers from DEGs and evaluated their prognostic value in a prediction model.

Results

We identified and validated PD1, PDL1 and CTLA4 genes as prognostic markers, which are well-known immune checkpoints, and revealed two new potential prognostic immune checkpoints for LUAD, HHLA2 (logFC = 2.55, FDR = 1.89 × 10–6) and VTCN1 (logFC = −2.86, FDR = 1.72 × 10–11). Furthermore, we identified an 18-gene LUAD prognostic biomarker panel and observed that the classified high-risk group presented a significantly shorter overall survival time (HR = 3.57, p value = 4.07 × 10–10). The prediction model was validated in five independent high-throughput gene expression datasets.

Conclusions

The identified DEG features may serve as potential biomarkers for prognosis prediction of LUAD patients and immunotherapy. Based on that assumption, we identified a gene expression-based immune signature for lung adenocarcinoma prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BH:

Benjamin and Hochberg

CAMS:

Cell adhesion molecules

DEG:

Differential expression genes

DEIGs:

Differential expression immune genes

FDR:

False discovery rate

GEO:

Gene expression omnibus

HR:

Hazard ratio

IgA:

Immunoglobulin A

KEGG:

Kyoto encyclopedia of genes and genomes

LUAD:

Lung adenocarcinoma

RPKM:

Reads per kilobase per million

TCGA:

The Cancer Genome Atlas

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  2. Institute. NC. SEER Cancer Statistics Review, 1975–2011. Available online: https://seer.cancer.gov/csr/1975_2011/

  3. Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5:288–300. https://doi.org/10.21037/tlcr.2016.06.07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Saito M, Suzuki H, Kono K, Takenoshita S, Kohno T (2018) Treatment of lung adenocarcinoma by molecular-targeted therapy and immunotherapy. Surg Today 48:1–8. https://doi.org/10.1007/s00595-017-1497-7

    Article  PubMed  CAS  Google Scholar 

  5. Cha YJ, Kim HR, Lee CY, Cho BC, Shim HS (2016) Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status. Lung cancer 97:73–80. https://doi.org/10.1016/j.lungcan.2016.05.001

    Article  PubMed  Google Scholar 

  6. Teglasi V, Reiniger L, Fabian K et al (2017) Evaluating the significance of density, localization, and PD-1/PD-L1 immunopositivity of mononuclear cells in the clinical course of lung adenocarcinoma patients with brain metastasis. Neuro-oncology 19:1058–1067. https://doi.org/10.1093/neuonc/now309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. de Mello RA, Veloso AF, Esrom Catarina P, Nadine S, Antoniou G (2017) Potential role of immunotherapy in advanced non-small-cell lung cancer. OncoTargets Therapy 10:21–30. https://doi.org/10.2147/OTT.S90459

    Article  PubMed  Google Scholar 

  9. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584. https://doi.org/10.1038/nrd4591

    Article  PubMed  CAS  Google Scholar 

  10. Rizvi NA, Mazieres J, Planchard D et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257–265. https://doi.org/10.1016/S1470-2045(15)70054-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yamazaki N, Uhara H, Fukushima S et al (2015) Phase II study of the immune-checkpoint inhibitor ipilimumab plus dacarbazine in Japanese patients with previously untreated, unresectable or metastatic melanoma. Cancer Chemother Pharmacol 76:969–975. https://doi.org/10.1007/s00280-015-2870-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol Off J Am Soc Clin Oncol 28:3167–3175. https://doi.org/10.1200/JCO.2009.26.7609

    Article  CAS  Google Scholar 

  13. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723. https://doi.org/10.1016/j.cell.2017.01.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, Wolfel C, Huber C, Wolfel T (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 102:16013–16018. https://doi.org/10.1073/pnas.0500090102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Matsushita H, Vesely MD, Koboldt DC et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404. https://doi.org/10.1038/nature10755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Showe MK, Vachani A, Kossenkov AV et al (2009) Gene expression profiles in peripheral blood mononuclear cells can distinguish patients with non-small cell lung cancer from patients with nonmalignant lung disease. Can Res 69:9202–9210. https://doi.org/10.1158/0008-5472.CAN-09-1378

    Article  CAS  Google Scholar 

  17. Kossenkov AV, Vachani A, Chang C et al (2011) Resection of non-small cell lung cancers reverses tumor-induced gene expression changes in the peripheral immune system. Clin Cancer Res Off J Am Assoc Cancer Res 17:5867–5877. https://doi.org/10.1158/1078-0432.CCR-11-0737

    Article  CAS  Google Scholar 

  18. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  PubMed  CAS  Google Scholar 

  19. Fehringer G, Liu G, Briollais L et al (2012) Comparison of pathway analysis approaches using lung cancer GWAS data sets. PLoS ONE 7:e31816. https://doi.org/10.1371/journal.pone.0031816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cai G, **ao F, Cheng C, Li Y, Amos CI, Whitfield ML (2017) Population effect model identifies gene expression predictors of survival outcomes in lung adenocarcinoma for both Caucasian and Asian patients. PLoS ONE 12:e0175850. https://doi.org/10.1371/journal.pone.0175850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14:847–856. https://doi.org/10.1158/1535-7163.MCT-14-0983

    Article  PubMed  CAS  Google Scholar 

  23. Xu H, Ma J, Wu J, Chen L, Sun F, Qu C, Zheng D, Xu S (2016) Gene expression profiling analysis of lung adenocarcinoma. Braz J Med Biol Res Revista brasileira de pesquisas medicas e biologicas. https://doi.org/10.1590/1414-431X20154861

    Article  PubMed  Google Scholar 

  24. Qian L, Luo Q, Zhao X, Huang J (2014) Pathways enrichment analysis for differentially expressed genes in squamous lung cancer. Pathol Oncol Res POR 20:197–202. https://doi.org/10.1007/s12253-013-9685-2

    Article  PubMed  CAS  Google Scholar 

  25. Dong ZY, Zhang C, Li YF et al (2018) Genetic and immune profiles of solid predominant lung adenocarcinoma reveal potential immunotherapeutic strategies. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 13:85–96. https://doi.org/10.1016/j.jtho.2017.10.020

    Article  CAS  Google Scholar 

  26. Kadara H, Choi M, Zhang J et al (2017) Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol Off J Eur Soc Med Oncol 28:75–82. https://doi.org/10.1093/annonc/mdw436

    Article  CAS  Google Scholar 

  27. Yoon HS, Chen X, Yang VW (2003) Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 278:2101–2105. https://doi.org/10.1074/jbc.M211027200

    Article  PubMed  CAS  Google Scholar 

  28. Behbakht K, Qamar L, Aldridge CS, Coletta RD, Davidson SA, Thorburn A, Ford HL (2007) Six1 overexpression in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival. Can Res 67:3036–3042. https://doi.org/10.1158/0008-5472.CAN-06-3755

    Article  CAS  Google Scholar 

  29. Reichenberger KJ, Coletta RD, Schulte AP, Varella-Garcia M, Ford HL (2005) Gene amplification is a mechanism of Six1 overexpression in breast cancer. Can Res 65:2668–2675. https://doi.org/10.1158/0008-5472.CAN-04-4286

    Article  CAS  Google Scholar 

  30. Fu Y, Yan W, Mohun TJ, Evans SM (1998) Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 125:4439–4449

    PubMed  CAS  Google Scholar 

  31. Stohr N, Kohn M, Lederer M, Glass M, Reinke C, Singer RH, Huttelmaier S (2012) IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes Dev 26:176–189. https://doi.org/10.1101/gad.177642.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Stokes A, Wakano C, Koblan-Huberson M, Adra CN, Fleig A, Turner H (2006) TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal 18:1584–1594. https://doi.org/10.1016/j.cellsig.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  33. Blanco I, Kuchenbaecker K, Cuadras D et al (2015) Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers. PLoS ONE 10:e0120020. https://doi.org/10.1371/journal.pone.0120020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110. https://doi.org/10.1038/nrc3447

    Article  PubMed  CAS  Google Scholar 

  35. Barker HE, Cox TR, Erler JT (2012) The rationale for targeting the LOX family in cancer. Nat Rev Cancer 12:540–552. https://doi.org/10.1038/nrc3319

    Article  PubMed  CAS  Google Scholar 

  36. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790. https://doi.org/10.1038/nri1199

    Article  PubMed  CAS  Google Scholar 

  37. **ao Y, Freeman GJ (2015) A New B7:CD28 family checkpoint target for cancer immunotherapy: HHLA2. Clin Cancer Res Off J Am Assoc Cancer Res 21:2201–2203. https://doi.org/10.1158/1078-0432.CCR-14-2658

    Article  CAS  Google Scholar 

  38. Zhao R, Chinai JM, Buhl S et al (2013) HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc Natl Acad Sci USA 110:9879–9884. https://doi.org/10.1073/pnas.1303524110

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cheng H, Janakiram M, Borczuk A et al (2017) HHLA2, a new immune checkpoint member of the B7 family, is widely expressed in human lung cancer and associated with EGFR Mutational Status. Clin Cancer Res Off J Am Assoc Cancer Res 23:825–832. https://doi.org/10.1158/1078-0432.CCR-15-3071

    Article  CAS  Google Scholar 

  40. Prasad DV, Richards S, Mai XM, Dong C (2003) B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity 18:863–873. https://doi.org/10.1016/s1074-7613(03)00147-x

    Article  PubMed  CAS  Google Scholar 

  41. Chen C, Zhu YB, Shen Y, Zhu YH, Zhang XG, Huang JA (2012) Increase of circulating B7–H4-expressing CD68+ macrophage correlated with clinical stage of lung carcinomas. J Immunother 35:354–358. https://doi.org/10.1097/CJI.0b013e31824212c4

    Article  PubMed  CAS  Google Scholar 

  42. Zhang X, Cai L, Zhang G, Shen Y, Huang J (2017) B7–H4 promotes tumor growth and metastatic progression in lung cancer by impacting cell proliferation and survival. Oncotarget 8:18861–18871. https://doi.org/10.18632/oncotarget.14475

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen C, Qu QX, Shen Y, Mu CY, Zhu YB, Zhang XG, Huang JA (2012) Induced expression of B7–H4 on the surface of lung cancer cell by the tumor-associated macrophages: a potential mechanism of immune escape. Cancer Lett 317:99–105. https://doi.org/10.1016/j.canlet.2011.11.017

    Article  PubMed  CAS  Google Scholar 

  44. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig 117:1175–1183. https://doi.org/10.1172/JCI31537

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. https://doi.org/10.1038/nature01322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the study participants and research staff for their contributions and commitment to this study.

Funding

The preparation of this manuscript was supported by internal funding from the University of South Carolina for Dr. Feifei **ao and Dr. Guoshuai Cai.

Author information

Authors and Affiliations

Authors

Contributions

FX and GC made substantial contributions to the conception and design of the study. LW and XL performed all analyses. All authors made substantial contributions to the acquisition, analysis or interpretation of data for the work. LW wrote the first draft of the manuscript. FX, GC, CC and CIA revised the manuscript for important intellectual content. All authors approved the manuscript.

Corresponding author

Correspondence to Feifei **ao.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 479 kb)

Supplementary file2 (PDF 890 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Luo, X., Cheng, C. et al. A gene expression-based immune signature for lung adenocarcinoma prognosis. Cancer Immunol Immunother 69, 1881–1890 (2020). https://doi.org/10.1007/s00262-020-02595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02595-8

Keywords

Navigation