Log in

The non-small cell lung cancer immune landscape: emerging complexity, prognostic relevance and prospective significance in the context of immunotherapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapy of non-small cell lung cancer (NSCLC), by immune checkpoint inhibitors, has profoundly improved the clinical management of advanced disease. However, only a fraction of patients respond and no effective predictive factors have been defined. Here, we discuss the prospects for identification of such predictors of response to immunotherapy, by fostering an in-depth analysis of the immune landscape of NSCLC. The emerging picture, from several recent studies, is that the immune contexture of NSCLC lesions is a complex and heterogeneous feature, as documented by analysis for frequency, phenotype and spatial distribution of innate and adaptive immune cells, and by characterization of functional status of inhibitory receptor+ T cells. The complexity of the immune landscape of NSCLC stems from the interaction of several factors, including tumor histology, molecular subtype, main oncogenic drivers, nonsynonymous mutational load, tumor aneuploidy, clonal heterogeneity and tumor evolution, as well as the process of epithelial–mesenchymal transition. All these factors contribute to shape NSCLC immune profiles that have clear prognostic significance. An integrated analysis of the immune and molecular profile of the neoplastic lesions may allow to define the potential predictive role of the immune landscape for response to immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADC:

Adenocarcinoma

DFS:

Disease-free survival

EEC:

Early effector cell

eMDSC:

Early MDSC

EMT:

Epithelial mesenchymal transition

GC:

Germinal center

ICB:

Immune checkpoint blockade

IR:

Inhibitory receptor

MDSC:

Myeloid-derived suppressor cell

M-MDSC:

Monocytic MDSC

nLung:

Non-neoplastic lung tissue

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PFS:

Progression-free survival

PI:

Proximal inflammatory

PMN-MDSC:

Polymorphonuclear MDSC

PP:

Proximal proliferative

SCC:

Squamous cell carcinoma

SCNA:

Somatic copy number alteration

TCR:

T cell receptor

TEM:

T effector memory

TEMRA:

T effector memory RA

Tex:

Exhausted T cell

TH1:

Type 1 T Helper cell

TH2:

Type 2 T Helper cell

TH17:

T Helper 17 cell

Ti-BALT:

Tumor-induced bronchus-associated lymphoid tissues

TIL:

Tumor-infiltrating lymphocyte

TLS:

Tertiary lymphoid structure

Treg:

Regulatory T cell

TRU:

Terminal respiratory unit

t-SNE:

t-distributed stochastic neighbor embedding

References

  1. Malhotra J, Jabbour SK, Aisner J (2017) Current state of immunotherapy for non-small cell lung cancer. Transl Lung Cancer Res 6:196–211. https://doi.org/10.21037/tlcr.2017.03.01

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kim BJ, Kim JH, Kim HS (2017) Survival benefit of immune checkpoint inhibitors according to the histology in non-small-cell lung cancer: a meta-analysis and review. Oncotarget 8:51779–51785. https://doi.org/10.18632/oncotarget.17213

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tibaldi C, Lunghi A, Baldini E (2017) Use of programmed cell death protein ligand 1 assay to predict the outcomes of non-small cell lung cancer patients treated with immune checkpoint inhibitors. World J Clin Oncol 8:320–328. https://doi.org/10.5306/wjco.v8.i4.320

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wei SC, Levine JH, Cogdill AP et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170:1120–1133. https://doi.org/10.1016/j.cell.2017.07.024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Tassi E, Grazia G, Vegetti C et al (2017) Early effector T lymphocytes coexpress multiple inhibitory receptors in primary non-small cell lung cancer. Cancer Res 77:851–861. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  6. Kargl J, Busch SE, Yang GH et al (2017) Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat Commun 8:14381. https://doi.org/10.1038/ncomms14381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Del Mar Valenzuela-Membrives M, Perea-García F, Sanchez-Palencia A et al (2016) Progressive changes in composition of lymphocytes in lung tissues from patients with non-small-cell lung cancer. Oncotarget 7:71608–71619. https://doi.org/10.18632/oncotarget.12264

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lizotte PH, Ivanova EV, Awad MM et al (2016) Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes. JCI Insight 1:e89014. https://doi.org/10.1172/jci.insight.89014

    Article  PubMed  PubMed Central  Google Scholar 

  9. Van Der Maaten L (2014) Accelerating t-SNE using Tree-based Algorithms. J Mach Learn Res 15:3221–3245

    Google Scholar 

  10. Ayers M, Lunceford J, Nebozhyn M et al (2017) IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127:2930–2940. https://doi.org/10.1172/JCI91190

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karasaki T, Nagayama K, Kuwano H et al (2017) An immunogram for the cancer-immunity cycle: towards personalized immunotherapy of lung cancer. J Thorac Oncol 12:791–803. https://doi.org/10.1016/j.jtho.2017.01.005

    Article  PubMed  Google Scholar 

  12. Lavin Y, Kobayashi S, Leader A et al (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–765. https://doi.org/10.1016/j.cell.2017.04.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dieu-Nosjean MC, Giraldo NA, Kaplon H et al (2016) Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 271:260 – 75. https://doi.org/10.1111/imr.12405

  14. Solinas C, Garaud S, De Silva P et al (2017) Immune checkpoint molecules on tumor-infiltrating lymphocytes and their association with tertiary lymphoid structures in human breast cancer. Front Immunol 8:1412. https://doi.org/10.3389/fimmu.2017.01412

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roberts EW, Broz ML, Binnewies M et al (2016) Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30:324–336. https://doi.org/10.1016/j.ccell.2016.06.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499. https://doi.org/10.1038/nri3862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Thommen DS, Schreiner J, Müller P et al (2015) Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res 3:1344–1355. https://doi.org/10.1158/2326-6066

    Article  PubMed  CAS  Google Scholar 

  18. Wherry EJ, Ha SJ, Kaech SM et al (2007) Molecular signature of CD8 + T cell exhaustion during chronic viral infection. Immunity 27:670–684. https://doi.org/10.1016/j.immuni.2007.09.006

    Article  PubMed  CAS  Google Scholar 

  19. Lu P, Youngblood BA, Austin JW et al (2014) Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med 211:515 – 27. https://doi.org/10.1084/jem.20130208

  20. Fuertes Marraco SA, Neubert NJ, Verdeil G et al (2015) Inhibitory receptors beyond T cell exhaustion. Front Immunol 6:310. https://doi.org/10.3389/fimmu.2015.00310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Anichini A, Molla A, Vegetti C et al (2010) Tumor-reactive CD8 + early effector T cells identified at tumor site in primary and metastatic melanoma. Cancer Res 2010 70:8378–8387. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  22. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525. https://doi.org/10.1038/nature11404

    Article  CAS  Google Scholar 

  23. Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550. https://doi.org/10.1038/nature13385

    Article  CAS  Google Scholar 

  24. Faruki H, Mayhew GM, Serody JS et al (2017) Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J Thorac Oncol 12:943–953. https://doi.org/10.1016/j.jtho.2017.03.010

    Article  PubMed  Google Scholar 

  25. Bindea G, Mlecnik B, Tosolini M et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–795. https://doi.org/10.1016/j.immuni.2013.10.003

    Article  PubMed  CAS  Google Scholar 

  26. Chen F, Zhang Y, Parra E et al (2017) Multiplatform-based molecular subtypes of non-small-cell lung cancer. Oncogene 36:1384–1393. https://doi.org/10.1038/onc.2016.303

    Article  PubMed  CAS  Google Scholar 

  27. Busch SE, Hanke ML, Kargl J et al (2016) Lung cancer subtypes generate unique immune responses. J Immunol 197:4493–4503. https://doi.org/10.4049/jimmunol.1600576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Skoulidis F, Byers LA, Diao L et al (2015) Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 5:860–877. https://doi.org/10.1158/2159-8290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Koyama S, Akbay EA, Li YY et al (2016) STK11/LKB1 Deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res 76:999–1008. https://doi.org/10.1158/0008-5472

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lastwika KJ, Wilson W 3rd, Li QK et al (2016) Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 76:227–738. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  31. Roussel H, De Guillebon E, Biard L et al (2017) Composite biomarkers defined by multiparametric immunofluorescence analysis identify ALK-positive adenocarcinoma as a potential target for immunotherapy. Oncoimmunology 6:e1286437. https://doi.org/10.1080/2162402X.2017.1286437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ribas A (2015) Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 5:915–919. https://doi.org/10.1158/2159-8290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Davoli T, Uno H, Wooten EC et al (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355(6322). pii: eaaf8399. https://doi.org/10.1126/science.aaf8399.

  34. Prudkin L, Liu DD, Ozburn NC et al (2009) Epithelial-to-mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung. Mod Pathol 22:668–678. https://doi.org/10.1038/modpathol.2009.19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lou Y, Diao L, Cuentas ER et al (2016) Epithelial–mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin Cancer Res 22:3630–3642. https://doi.org/10.1158/1078-0432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tripathi SC, Peters HL, Taguchi A et al (2016) Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc Natl Acad Sci USA 113:E1555-64. https://doi.org/10.1073/pnas.1521812113

    Article  PubMed  CAS  Google Scholar 

  37. Fridman WH, Pages F, Sautes-Fridman C et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

    Article  PubMed  CAS  Google Scholar 

  38. Bremnes RM, Busund LT, Kilvær TL et al (2016) The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer. J Thorac Oncol 11:789–800. https://doi.org/10.1016/j.jtho.2016.01.015

    Article  PubMed  Google Scholar 

  39. Donnem T, Hald SM, Paulsen EE et al (2015) Stromal CD8 + T-cell density—a promising supplement to TNM staging in non-small cell lung cancer. Clin Cancer Res 21:2635–2643. https://doi.org/10.1158/1078-0432

    Article  PubMed  Google Scholar 

  40. Feng W, Li Y, Shen L et al (2016) Prognostic value of tumor-infiltrating lymphocytes for patients with completely resected stage IIIA(N2) non-small cell lung cancer. Oncotarget 7:7227–7240. https://doi.org/10.18632/oncotarget.6979

    Article  PubMed  PubMed Central  Google Scholar 

  41. Parra ER, Behrens C, Rodriguez-Canales J et al (2016) Image analysis-based assessment of PD-L1 and tumor-associated immune cells density supports distinct intratumoral microenvironment groups in non-small cell lung carcinoma patients. Clin Cancer Res 22:6278–6289. https://doi.org/10.1158/1078-0432.CCR-15-2443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Djenidi F, Adam J, Goubar A et al (2015) CD8+ CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J Immunol 194:3475–3486. https://doi.org/10.4049/jimmunol.1402711

    Article  PubMed  CAS  Google Scholar 

  43. Remark R, Becker C, Gomez JE et al (2015) The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am J Respir Crit Care Med 191:377–390. https://doi.org/10.1164/rccm.201409-1671PP

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhao S, Jiang T, Zhang L et al (2016) Clinicopathological and prognostic significance of regulatory T cells in patients with non-small cell lung cancer: a systematic review with meta-analysis. Oncotarget 7:36065–36073. https://doi.org/10.18632/oncotarget.9130

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mei J, **ao Z, Guo C et al (2016) Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: a systemic review and meta-analysis. Oncotarget 7:34217–34228. https://doi.org/10.18632/oncotarget.9079

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rakaee M, Busund LT, Paulsen EE et al (2016) Prognostic effect of intratumoral neutrophils across histological subtypes of non-small cell lung cancer. Oncotarget 7:72184–72196. https://doi.org/10.18632/oncotarget.12360

    Article  PubMed  PubMed Central  Google Scholar 

  47. Germain C, Gnjatic S, Tamzalit F et al (2014) Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 189:832–844. https://doi.org/10.1164/rccm.201309-1611OC

    Article  PubMed  CAS  Google Scholar 

  48. Goc J, Germain C, Vo-Bourgais TK et al (2014) Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 74:705–715. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  49. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. https://doi.org/10.1126/science.aaa1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. McGranahan N, Furness AJ, Rosenthal R et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–1469. https://doi.org/10.1126/science.aaf1490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074. https://doi.org/10.1158/1078-0432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Prat A, Navarro A, Paré L et al (2017) Immune-related gene expression profiling after PD-1 blockade in Non-Small Cell Lung Carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res 77:3540–3550. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  54. Huang AC, Postow MA, Orlowski RJ et al (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545:60–65. https://doi.org/10.1038/nature22079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kamphorst AO, Pillai RN, Yang S et al (2017) Proliferation of PD-1 + CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci USA 114:4993–4998. https://doi.org/10.1073/pnas.1705327114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kamphorst AO, Wieland A, Nasti T et al (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:1423–1427. https://doi.org/10.1126/science.aaf0683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the excellent technical contribution of Mrs. Claudia Vegetti, Alessandra Molla, Ilaria Bersani and Paola Baldassari to the work mentioned in this paper.

Funding

The work mentioned in this paper was supported by Grant #17431 from Associazione Italiana per la Ricerca sul Cancro (A. I. R. C.) to Andrea Anichini. Elena Tassi was supported by a fellowship from Fondazione Beretta-Berlucchi. Giulia Grazia was supported by a fellowship from Fondazione Italiana per la Ricerca sul Cancro (FIRC).

Author information

Authors and Affiliations

Authors

Contributions

AA designed the structure of the review and took the lead in writing the paper. ET and GG contributed to select and review the mentioned literature and to the final revision of the text. RM contributed to design and writing of the paper and to selecting and reviewing all of the mentioned literature.

Corresponding author

Correspondence to Andrea Anichini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Fourteenth Meeting of the Network Italiano per la Bioterapia dei Tumori (NIBIT) on Cancer Bio-Immunotherapy, held in Siena, Italy, 13th–15th October 2016. It is part of a series of Focussed Research Reviews and meeting report in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anichini, A., Tassi, E., Grazia, G. et al. The non-small cell lung cancer immune landscape: emerging complexity, prognostic relevance and prospective significance in the context of immunotherapy. Cancer Immunol Immunother 67, 1011–1022 (2018). https://doi.org/10.1007/s00262-018-2147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2147-7

Keywords

Navigation