Log in

Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cancer immunotherapy exploits the immune system’s ability to differentiate between tumor target cells and host cells. Except for limited success against a few tumor types, most immunotherapies have not achieved the desired clinical efficacy until recently. The field of cancer immunotherapy has flourished with a variety of new agents for clinical use, and remarkable progress has been made in the design of effective immunotherapeutic regimens. Furthermore, the therapeutic outcome of these novel agents is enhanced when combined with conventional cancer treatment modalities including radiotherapy (RT). An increasing number of studies have demonstrated the abscopal effect, an immunologic response occurring in cancer sites distant from irradiated areas. The present work reviews studies on the combination between RT and immunotherapy to induce synergistic and abscopal effects involved in cancer immunomodulation. Further insight into the complex interactions between the immune system and cancer cells in the tumor microenvironment, and their modulation by RT, may reveal the abscopal effect as a clinically relevant and reproducible event leading to improved cancer outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

CD:

Cluster of differentiation

CTL:

Cytotoxic T lymphocyte

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

DC:

Dendritic cell

EBRT:

External beam radiation therapy

Gy:

Gray

HR:

Hazard ratio

ICAM:

Intracellular adhesion molecule

IFN:

Interferon

IGRT:

Image-guided radiation therapy

IL-2:

Interleukin-2

IMRT:

Intensity-modulated radiation therapy

mRCC:

Metastatic renal cell carcinoma

OS:

Overall survival

PD-1:

Programmed death 1

PD-L1:

Programmed death-ligand 1

PSA:

Prostate-specific antigen

RCC:

Renal cell carcinoma

RT:

Radiation therapy

SAbR:

Stereotactic ablative radiation

TAA:

Tumor-associated antigen

TCR:

T cell receptor

TGF:

Transforming growth factor

TIL:

Tumor-infiltrating lymphocyte

Treg:

Regulatory T cell

References

  1. Bhatia A, Kumar Y (2014) Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol 10(1):41–62. doi:10.1586/1744666X.2014.865519

    Article  CAS  PubMed  Google Scholar 

  2. Kulzer L, Rubner Y, Deloch L, Allgauer A, Frey B, Fietkau R, Dorrie J, Schaft N, Gaipl US (2014) Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol 11(4):328–336. doi:10.3109/1547691X.2014.880533

    Article  CAS  PubMed  Google Scholar 

  3. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271. doi:10.1084/jem.20052494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao X (2010) Regulatory T cells and immune tolerance to tumors. Immunol Res 46(1–3):79–93. doi:10.1007/s12026-009-8124-7

    Article  PubMed  Google Scholar 

  5. Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26(305):234–241. doi:10.1259/0007-1285-26-305-234

    Article  CAS  PubMed  Google Scholar 

  6. Konoeda K (1990) Therapeutic efficacy of pre-operative radiotherapy on breast carcinoma: in special reference to its abscopal effect on metastatic lymph-nodes. Nihon Gan Chiryo Gakkai Shi 25(6):1204–1214

    CAS  PubMed  Google Scholar 

  7. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870. doi:10.1016/j.ijrobp.2003.09.012

    Article  PubMed  Google Scholar 

  8. Wersall PJ, Blomgren H, Pisa P, Lax I, Kalkner KM, Svedman C (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45(4):493–497. doi:10.1080/02841860600604611

    Article  PubMed  Google Scholar 

  9. Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J, O’Reilly MS (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993

    CAS  PubMed  Google Scholar 

  10. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, Friedman K, Ponzo F, Babb JS, Goldberg J, Demaria S, Formenti SC (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803. doi:10.1016/S1470-2045(15)00054-6

    Article  CAS  PubMed  Google Scholar 

  11. Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, Giugliano FM, Sandomenico F, Petrillo A, Curvietto M, Esposito A, Paone M, Palla M, Palmieri G, Caraco C, Ciliberto G, Mozzillo N, Ascierto PA (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780. doi:10.4161/onci.28780

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D (2015) The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev 41(6):503–510. doi:10.1016/j.ctrv.2015.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  13. Derer A, Deloch L, Rubner Y, Fietkau R, Frey B, Gaipl US (2015) Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses—pre-clinical evidence and ongoing clinical applications. Front Immunol 6:505. doi:10.3389/fimmu.2015.00505

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526. doi:10.1056/NEJMoa1104621

    Article  CAS  PubMed  Google Scholar 

  16. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388. doi:10.1158/1078-0432.CCR-09-0265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, Ng S, Maio M, Franke FA, Sundar S, Agarwal N, Bergman AM, Ciuleanu TE, Korbenfeld E, Sengelov L, Hansen S, Logothetis C, Beer TM, McHenry MB, Gagnier P, Liu D, Gerritsen WR, Investigators CA (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15(7):700–712. doi:10.1016/S1470-2045(14)70189-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19(5):1021–1034. doi:10.1158/1078-0432.CCR-12-2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ribas A (2015) Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 5(9):915–919. doi:10.1158/2159-8290.CD-15-0563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang C, Wang X, Soh H, Seyedin S, Cortez MA, Krishnan S, Massarelli E, Hong D, Naing A, Diab A, Gomez D, Ye H, Heymach J, Komaki R, Allison JP, Sharma P, Welsh JW (2014) Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res 2(9):831–838. doi:10.1158/2326-6066.CIR-14-0069

    Article  CAS  PubMed  Google Scholar 

  21. Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, Duret H, Yagita H, Johnstone RW, Smyth MJ, Haynes NM (2012) Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res 72(13):3163–3174. doi:10.1158/0008-5472.CAN-12-0210

    Article  CAS  PubMed  Google Scholar 

  22. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Investig 124(2):687–695. doi:10.1172/JCI67313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams MP, Mansfield AS, Furutani KM, Olivier KR, Kwon ED (2015) PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res 3(6):610–619. doi:10.1158/2326-6066.CIR-14-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH, Demaria S (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75(11):2232–2242. doi:10.1158/0008-5472.CAN-14-3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M, Stewart R, Jones H, Wilkinson RW, Honeychurch J, Illidge TM (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74(19):5458–5468. doi:10.1158/0008-5472.CAN-14-1258

    Article  CAS  PubMed  Google Scholar 

  26. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, Herati RS, Mansfield KD, Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vonderheide RH, Minn AJ (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377. doi:10.1038/nature14292

    Article  CAS  PubMed  Google Scholar 

  27. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523

    Article  CAS  PubMed  Google Scholar 

  28. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515(7528):558–562. doi:10.1038/nature13904

    Article  CAS  PubMed  Google Scholar 

  29. Seung SK, Curti BD, Crittenden M, Walker E, Coffey T, Siebert JC, Miller W, Payne R, Glenn L, Bageac A, Urba WJ (2012) Phase 1 study of stereotactic body radiotherapy and interleukin-2—tumor and immunological responses. Sci Transl Med 4(137):137ra174. doi:10.1126/scitranslmed.3003649

    Article  Google Scholar 

  30. Hodge JW, Sharp HJ, Gameiro SR (2012) Abscopal regression of antigen disparate tumors by antigen cascade after systemic tumor vaccination in combination with local tumor radiation. Cancer Biother Radiopharm 27(1):12–22. doi:10.1089/cbr.2012.1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, Sedrak C, Jungbluth AA, Chua R, Yang AS, Roman RA, Rosner S, Benson B, Allison JP, Lesokhin AM, Gnjatic S, Wolchok JD (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931. doi:10.1056/NEJMoa1112824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nesslinger NJ, Sahota RA, Stone B, Johnson K, Chima N, King C, Rasmussen D, Bishop D, Rennie PS, Gleave M, Blood P, Pai H, Ludgate C, Nelson BH (2007) Standard treatments induce antigen-specific immune responses in prostate cancer. Clin Cancer Res 13(5):1493–1502. doi:10.1158/1078-0432.CCR-06-1772

    Article  CAS  PubMed  Google Scholar 

  33. Hannan R, Zhang H, Wallecha A, Singh R, Liu L, Cohen P, Alfieri A, Rothman J, Guha C (2012) Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol Immunother 61(12):2227–2238. doi:10.1007/s00262-012-1257-x

    Article  CAS  PubMed  Google Scholar 

  34. Mason KA, Ariga H, Neal R, Valdecanas D, Hunter N, Krieg AM, Whisnant JK, Milas L (2005) Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 11(1):361–369

    CAS  PubMed  Google Scholar 

  35. Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6(8):595–601. doi:10.1038/nri1901

    Article  CAS  PubMed  Google Scholar 

  36. Hancock BW, Rees RC (1990) Interleukin-2 and cancer therapy. Cancer Cells 2(1):29–32

    CAS  PubMed  Google Scholar 

  37. Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4 + CD25(hi) Foxp3 + regulatory T cells in cancer patients. Blood 107(6):2409–2414. doi:10.1182/blood-2005-06-2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klapper JA, Downey SG, Smith FO, Yang JC, Hughes MS, Kammula US, Sherry RM, Royal RE, Steinberg SM, Rosenberg S (2008) High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 113(2):293–301. doi:10.1002/cncr.23552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, Logan TF, Kirkwood JM, Gordon MS, Sosman JA, Ernstoff MS, Tretter CP, Urba WJ, Smith JW, Margolin KA, Mier JW, Gollob JA, Dutcher JP, Atkins MB (2005) Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol 23(1):133–141. doi:10.1200/JCO.2005.03.206

    Article  CAS  PubMed  Google Scholar 

  40. Yang JC, Sherry RM, Steinberg SM, Topalian SL, Schwartzentruber DJ, Hwu P, Seipp CA, Rogers-Freezer L, Morton KE, White DE, Liewehr DJ, Merino MJ, Rosenberg SA (2003) Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 21(16):3127–3132. doi:10.1200/JCO.2003.02.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yasuda K, Nirei T, Tsuno NH, Nagawa H, Kitayama J (2011) Intratumoral injection of interleukin-2 augments the local and abscopal effects of radiotherapy in murine rectal cancer. Cancer Sci 102(7):1257–1263. doi:10.1111/j.1349-7006.2011.01940.x

    Article  CAS  PubMed  Google Scholar 

  42. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T, Weichselbaum RR, Fu YX (2009) Therapeutic effects of ablative radiation on local tumor require CD8 + T cells: changing strategies for cancer treatment. Blood 114(3):589–595. doi:10.1182/blood-2009-02-206870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. A service of the U.S. National Institutes of Health (2015) https://clinicaltrials.gov/

  44. Zegers CM, Rekers NH, Quaden DH, Lieuwes NG, Yaromina A, Germeraad WT, Wieten L, Biessen EA, Boon L, Neri D, Troost EG, Dubois LJ, Lambin P (2015) Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting antitumor effects. Clin Cancer Res 21(5):1151–1160. doi:10.1158/1078-0432.CCR-14-2676

    Article  CAS  PubMed  Google Scholar 

  45. Chang DT, Amdur RJ, Morris CG, Mendenhall WM (2006) Adjuvant radiotherapy for cutaneous melanoma: comparing hypofractionation to conventional fractionation. Int J Radiat Oncol Biol Phys 66(4):1051–1055. doi:10.1016/j.ijrobp.2006.05.056

    Article  PubMed  Google Scholar 

  46. Schaue D, Ratikan JA, Iwamoto KS, McBride WH (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310. doi:10.1016/j.ijrobp.2011.09.049

    Article  CAS  PubMed  Google Scholar 

  47. Wattenberg MM, Fahim A, Ahmed MM, Hodge JW (2014) Unlocking the combination: potentiation of radiation-induced antitumor responses with immunotherapy. Radiat Res 182(2):126–138. doi:10.1667/RR13374.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, Zhang N, Kohrt H, Jensen K, Dejbakhsh-Jones S, Shizuru JA, Negrin RN, Engleman EG, Strober S (2015) Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res 21(16):3727–3739. doi:10.1158/1078-0432.CCR-14-2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsai MH, Cook JA, Chandramouli GV, DeGraff W, Yan H, Zhao S, Coleman CN, Mitchell JB, Chuang EY (2007) Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res 67(8):3845–3852. doi:10.1158/0008-5472.CAN-06-4250

    Article  CAS  PubMed  Google Scholar 

  50. Kumari A, Cacan E, Greer SF, Garnett-Benson C (2013) Turning T cells on: epigenetically enhanced expression of effector T-cell costimulatory molecules on irradiated human tumor cells. J Immunother Cancer 1:17. doi:10.1186/2051-1426-1-17

    Article  PubMed  PubMed Central  Google Scholar 

  51. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734

    CAS  PubMed  Google Scholar 

  52. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, Huang X, Gajewski TF, Chen ZJ, Fu YX, Weichselbaum RR (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):843–852. doi:10.1016/j.immuni.2014.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349. doi:10.1016/j.ijrobp.2012.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wada S, Harris TJ, Tryggestad E, Yoshimura K, Zeng J, Yen HR, Getnet D, Grosso JF, Bruno TC, De Marzo AM, Netto GJ, Pardoll DM, DeWeese TL, Wong J, Drake CG (2013) Combined treatment effects of radiation and immunotherapy: studies in an autochthonous prostate cancer model. Int J Radiat Oncol Biol Phys 87(4):769–776. doi:10.1016/j.ijrobp.2013.07.015

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chakraborty M, Wansley EK, Carrasquillo JA, Yu S, Paik CH, Camphausen K, Becker MD, Goeckeler WF, Schlom J, Hodge JW (2008) The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing. Clin Cancer Res 14(13):4241–4249. doi:10.1158/1078-0432.CCR-08-0335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yokouchi H, Chamoto K, Wakita D, Yamazaki K, Shirato H, Takeshima T, Dosaka-Akita H, Nishimura M, Yue Z, Kitamura H, Nishimura T (2007) Combination tumor immunotherapy with radiotherapy and Th1 cell therapy against murine lung carcinoma. Clin Exp Metastasis 24(7):533–540. doi:10.1007/s10585-007-9090-x

    Article  CAS  PubMed  Google Scholar 

  57. Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B, Guha C (1999) Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res 59(24):6028–6032

    CAS  PubMed  Google Scholar 

  58. Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64(12):4328–4337. doi:10.1158/0008-5472.CAN-04-0073

    Article  CAS  PubMed  Google Scholar 

  59. Chakraborty M, Gelbard A, Carrasquillo JA, Yu S, Mamede M, Paik CH, Camphausen K, Schlom J, Hodge JW (2008) Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects. Cancer Immunol Immunother 57(8):1173–1183. doi:10.1007/s00262-008-0449-x

    Article  CAS  PubMed  Google Scholar 

  60. Chiang CS, Hong JH, Wu YC, McBride WH, Dougherty GJ (2000) Combining radiation therapy with interleukin-3 gene immunotherapy. Cancer Gene Ther 7(8):1172–1178. doi:10.1038/sj.cgt.7700217

    Article  CAS  PubMed  Google Scholar 

  61. Driessens G, Nuttin L, Gras A, Maetens J, Mievis S, Schoore M, Velu T, Tenenbaum L, Preat V, Bruyns C (2011) Development of a successful antitumor therapeutic model combining in vivo dendritic cell vaccination with tumor irradiation and intratumoral GM-CSF delivery. Cancer Immunol Immunother 60(2):273–281. doi:10.1007/s00262-010-0941-y

    Article  CAS  PubMed  Google Scholar 

  62. Kim KW, Kim SH, Shin JG, Kim GS, Son YO, Park SW, Kwon BH, Kim DW, Lee CH, Sol MY, Jeong MH, Chung BS, Kang CD (2004) Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer 109(5):685–690. doi:10.1002/ijc.20036

    Article  CAS  PubMed  Google Scholar 

  63. Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T (2010) Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res 70(7):2697–2706. doi:10.1158/0008-5472.CAN-09-2982

    Article  CAS  PubMed  Google Scholar 

  64. Teitz-Tennenbaum S, Li Q, Rynkiewicz S, Ito F, Davis MA, McGinn CJ, Chang AE (2003) Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res 63(23):8466–8475

    CAS  PubMed  Google Scholar 

  65. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139

    Article  CAS  PubMed  Google Scholar 

  66. Zhang H, Liu L, Yu D, Kandimalla ER, Sun HB, Agrawal S, Guha C (2012) An in situ autologous tumor vaccination with combined radiation therapy and TLR9 agonist therapy. PLoS ONE 7(5):e38111. doi:10.1371/journal.pone.0038111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chamoto K, Takeshima T, Wakita D, Ohkuri T, Ashino S, Omatsu T, Shirato H, Kitamura H, Togashi Y, Nishimura T (2009) Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio- and immuno-resistant lung carcinoma cells. Cancer Sci 100(5):934–939. doi:10.1111/j.1349-7006.2009.01114.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jeffrey Meyer for his contribution to the scientific content of this review and editorial assistance. We thank Dr. Damiana Chiavolini for scientific editing. This review article was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquibul Hannan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical statements

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, D., Pop, L., Takeshima, T. et al. Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment. Cancer Immunol Immunother 66, 281–298 (2017). https://doi.org/10.1007/s00262-016-1914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1914-6

Keywords

Navigation