Log in

Growth arrest and DNA damage-inducible protein (GADD34) enhanced liver inflammation and tumorigenesis in a diethylnitrosamine (DEN)-treated murine model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Growth arrest and DNA damage-inducible protein (GADD34/Ppp1r15a) is induced by various stimuli including DNA damage and ER stress. DNA damage and oncogene activation, accompanied by tumor-specific DNA repair defects and a failure to stall the cell cycle, are early markers of hepatocellular carcinoma (HCC). However, whether GADD34 accounts for regulating HCC tumorigenesis remains elusive. Here, we demonstrated that GADD34 expression was upregulated in the liver of mice after exposure to a carcinogen, diethylnitrosamine (DEN). In both acute and chronic DEN treatment models, GADD34 deficiency not only decreased oncogene expression, but also reduced hepatic damage. Moreover, loss of GADD34 attenuated immune cell infiltration, pro-inflammatory cytokine expression and hepatic compensatory proliferation. Finally, GADD34-deficient mice showed impaired hepatocarcinogenesis. Thus, the process of DEN-induced HCC proceeded as follows. First, DEN treatment induced DNA damage in hepatocytes, resulting in elevated expression of GADD34 in the liver. The increased expression of GADD34 augmented hepatic necrosis followed by elevated expression of interleukin (IL)-1β and monocyte chemoattractant protein 1. This process promoted immune cell infiltration and Kupffer cell/macrophage activation followed by production of reactive oxygen species and pro-tumorigenic cytokines such as IL-6 and tumor necrosis factor-α. The pro-tumorigenic cytokines stimulated compensatory proliferation of surviving and mutant hepatocytes. Together with oncogene c-Myc expression, these processes led to HCC. Our results suggest therapeutic opportunities for HCC by targeting GADD34-related pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

ALT:

Alanine transaminase

BSA:

Bovine serum albumin

CCR2:

C-C chemokine receptor type 2

DAMPs:

Damage-associated molecular patterns

DEN:

Diethylnitrosamine

GADD34:

Growth arrest and DNA damage-inducible protein

H&E:

Hematoxylin and eosin

HCC:

Hepatocellular carcinoma

HRP:

Horseradish peroxidase

IHC:

Immunohistochemistry

IL:

Interleukin

KO:

Knockout

MCP1:

Monocyte chemoattractant protein 1

MMP9:

Matrix metalloproteinase-9

NF-κB:

Nuclear factor κB

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

STAT3:

Signal transducer and activator of transcription 3

TCPOBOP:

1,4-Bis-[2-(3,5-dichloropyridyloxy)]benzene

TNF-α:

Tumor necrosis factor-α

WT:

Wild type

References

  1. Center MM, Jemal A (2011) International trends in liver cancer incidence rates. Cancer Epidemiol Biomarkers Prev 20:2362–2368

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Leong TY, Leong AS (2005) Epidemiology and carcinogenesis of hepatocellular carcinoma. HPB (Oxford) 7:5–15

    Article  Google Scholar 

  4. Kumar M, Zhao X, Wang XW (2011) Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell Biosci 1:5

    Article  PubMed Central  PubMed  Google Scholar 

  5. Nakagawa H, Maeda S (2012) Inflammation- and stress-related signaling pathways in hepatocarcinogenesis. World J Gastroenterol 18:4071–4081

    Article  PubMed Central  PubMed  Google Scholar 

  6. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA (2004) Environmental and chemical carcinogenesis. Semin Cancer Biol 14:473–486

    Article  CAS  PubMed  Google Scholar 

  8. Poirier MC (2004) Chemical-induced DNA damage and human cancer risk. Nat Rev Cancer 4:630–637

    Article  CAS  PubMed  Google Scholar 

  9. Min L, Ji Y, Bakiri L et al (2012) Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 14:1203–1211

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  11. Kuraishy A, Karin M, Grivennikov SI (2011) Tumor promotion via injury- and death-induced inflammation. Immunity 35:467–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, Roth J, Gabrilovich D, Nefedova Y (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190:3815–3823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fornace AJ Jr, Alamo I Jr, Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85:8800–8804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Farook JM, Shields J, Tawfik A, Markand S, Sen T, Smith SB, Brann D, Dhandapani KM, Sen N (2013) GADD34 induces cell death through inactivation of Akt following traumatic brain injury. Cell Death Dis 4:e754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hollander MC, Poola-Kella S, Fornace AJ Jr (2003) Gadd34 functional domains involved in growth suppression and apoptosis. Oncogene 22:3827–3832

    Article  CAS  PubMed  Google Scholar 

  17. Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4:a008797

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nishio N, Ito S, Isobe K (2014) Loss of GADD34 induces early age-dependent deviation to the myeloid lineage. Immunol Cell Biol 92:170–180

    Article  CAS  PubMed  Google Scholar 

  19. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  CAS  PubMed  Google Scholar 

  20. Kojima E, Takeuchi A, Haneda M et al (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 17:1573–1575

    Article  CAS  PubMed  Google Scholar 

  21. Scaiewicz V, Nahmias A, Chung RT, Mueller T, Tirosh B, Shibolet O (2013) CCAAT/enhancer-binding protein homologous (CHOP) protein promotes carcinogenesis in the DEN-induced hepatocellular carcinoma model. PLoS One 8:e81065

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    Article  CAS  PubMed  Google Scholar 

  23. Lanaya H, Natarajan A, Komposch K et al (2014) EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat Cell Biol 16:972–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124

    Article  CAS  PubMed  Google Scholar 

  25. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A (2013) Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol 228:1404–1412

    Article  CAS  PubMed  Google Scholar 

  26. Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace AJ Jr, Tkachuk DC (1999) Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol 19:7050–7060

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hollander MC, Zhan Q, Bae I, Fornace AJ Jr (1997) Mammalian GADD34, an apoptosis- and DNA damage-inducible gene. J Biol Chem 272:13731–13737

    Article  CAS  PubMed  Google Scholar 

  28. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  CAS  PubMed  Google Scholar 

  29. Yagi A, Hasegawa Y, **ao H, Haneda M, Kojima E, Nishikimi A, Hasegawa T, Shimokata K, Isobe K (2003) GADD34 induces p53 phosphorylation and p21/WAF1 transcription. J Cell Biochem 90:1242–1249

    Article  CAS  PubMed  Google Scholar 

  30. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  CAS  PubMed  Google Scholar 

  33. Rose ML, Rivera CA, Bradford BU, Graves LM, Cattley RC, Schoonhoven R, Swenberg JA, Thurman RG (1999) Kupffer cell oxidant production is central to the mechanism of peroxisome proliferators. Carcinogenesis 20:27–33

    Article  CAS  PubMed  Google Scholar 

  34. Elinav E, Nowarski R, Thaiss CA, Hu B, ** C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13:759–771

    Article  CAS  PubMed  Google Scholar 

  35. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  CAS  PubMed  Google Scholar 

  36. Schetter AJ, Heegaard NH, Harris CC (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Pello OM, De Pizzol M, Mirolo M et al (2012) Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119:411–421

    Article  PubMed  Google Scholar 

  38. Bonecchi R, Locati M, Mantovani A (2011) Chemokines and cancer: a fatal attraction. Cancer Cell 19:434–435

    Article  CAS  PubMed  Google Scholar 

  39. Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22:33–40

    Article  CAS  PubMed  Google Scholar 

  40. Zaki MH, Vogel P, Malireddi R, Body-Malapel M, Anand PK, Bertin J, Green DR, Lamkanfi M, Kanneganti T-D (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20:649–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Fan Y, Bergmann A (2008) Apoptosis-induced compensatory proliferation. The cell is dead. long live the cell! Trends Cell Biol 18:467–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Maeda S, Kamata H, Luo J-L, Leffert H, Karin M (2005) IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    Article  CAS  PubMed  Google Scholar 

  43. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Luedde T, Schwabe RF (2011) NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8:108–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Tanaka for technical assistance with flow cytometry experiments and Mrs. Mizuguchi for confocal microscopic analysis (Laboratory of Division for Medical Research Engineering, Nagoya University Graduate School of Medicine) as well as N. Oiwa for administrative assistance. This research was supported by the Ministry of Education, Science, Technology, Sports and Culture, Japan, and China Scholarship Council, China (Project Number: 201408050020).

Conflict of interest

We declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Isobe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Nishio, N., Ito, S. et al. Growth arrest and DNA damage-inducible protein (GADD34) enhanced liver inflammation and tumorigenesis in a diethylnitrosamine (DEN)-treated murine model. Cancer Immunol Immunother 64, 777–789 (2015). https://doi.org/10.1007/s00262-015-1690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1690-8

Keywords

Navigation