Log in

AE37 peptide vaccination in prostate cancer: identification of biomarkers in the context of prognosis and prediction

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A fundamental challenge in administering immunotherapies for cancer is the establishment of biomarkers that can predict patients’ responsiveness to treatment. In this study, our aim was to predict the immunologic and clinical responses of vaccination therapy with an Ii-key-modified HER-2/neu peptide (Ii-key/HER-2(776–790) or AE37), applied in our recent phase I study in patients with prostate cancer. To this end, we retrospectively analyzed our data derived from immunologic determinations before, during and after primary series of vaccinations with AE37, as well as after one AE37 booster injection. Using the obtained data, we then observed the relationship between the immunologic parameters and clinical outcome of patients. We found that preexisting levels of transforming growth factor beta (TGF-β) had an inverse correlation with in vivo and in vitro immunologic responses to the AE37 vaccine which were measured as delayed-type hypersensitivity (DTH) and interferon gamma (IFN-γ) production in response to the native HER-2(776–790) (or AE36) peptide, respectively. Patients with preexistent IFN-γ immunity to AE36 developed positive DTH reactions after primary vaccinations and booster. Moreover, we could detect a direct correlation between IFN-γ production and DTH reactions in response to AE36 challenge in our vaccinated patients. DTH reactions were a stronger indicator for patients’ overall survival (OS) than preexistent or vaccine-induced IFN-γ immunity. In contrast, we found that preexisting TGF-β levels were correlated with shorter patients’ OS. These retrospective analyses suggest that the above biomarkers at the time-points measured offer promise for evaluating immunologic and clinical responses to AE37-based vaccinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DTH:

Delayed-type hypersensitivity

FDA:

Food and drug administration

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

IFN-γ:

Interferon gamma

LT:

Long term

LTB:

Long-term booster

LTI:

Long-term immunity

OS:

Overall survival

TGF-β:

Transforming growth factor beta

References

  1. Di Lorenzo G, Buonerba C, Kantoff PW (2011) Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol 8:551–561. doi:10.1038/nrclinonc.2011.72

    Article  PubMed  Google Scholar 

  2. Cheng ML, Fong L (2014) Beyond sipuleucel-T: immune approaches to treating prostate cancer. Curr Treat Options Oncol 15:115–126. doi:10.1007/s11864-013-0267-z

    Article  PubMed  Google Scholar 

  3. May KF Jr, Gulley JL, Drake CG, Dranoff G, Kantoff PW (2011) Prostate cancer immunotherapy. Clin Cancer Res 17:5233–5238. doi:10.1158/1078-0432.CCR-10-3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Schlom J (2012) Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 104:599–613. doi:10.1093/jnci/djs033

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Baxevanis CN (2012) Outlining novel scenarios for improved therapeutic cancer vaccines: the PANVAC paradigm. Expert Rev Vaccines. 11:275–277. doi:10.1586/erv.11.193

    Article  PubMed  CAS  Google Scholar 

  6. Cowen D, Troncoso P, Khoo VS, Zagars GK, von Eschenbach AC, Meistrich ML, Pollack A (2002) Ki-67 staining is an independent correlate of biochemical failure in prostate cancer treated with radiotherapy. Clin Cancer Res 8:1148–1154

    PubMed  Google Scholar 

  7. Khor LY, Bae K, Paulus R et al (2009) MDM2 and Ki-67 predict for distant metastasis and mortality in men treated with radiotherapy and androgen deprivation for prostate cancer: RTOG 92-02. J Clin Oncol 27:3177–3184. doi:10.1200/JCO.2008.19.8267

    Article  PubMed  PubMed Central  Google Scholar 

  8. Travis MA, Sheppard D (2014) TGF-beta activation and function in immunity. Annu Rev Immunol 32:51–82. doi:10.1146/annurev-immunol-032713-120257

    Article  PubMed  CAS  Google Scholar 

  9. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520. doi:10.1038/nrc1926

    Article  PubMed  CAS  Google Scholar 

  10. Steiner MS, Zhou ZZ, Tonb DC, Barrack ER (1994) Expression of transforming growth factor-beta 1 in prostate cancer. Endocrinology 135:2240–2247. doi:10.1210/endo.135.5.7956947

    PubMed  CAS  Google Scholar 

  11. Barrack ER (1997) TGF beta in prostate cancer: a growth inhibitor that can enhance tumorigenicity. Prostate 31:61–70

    Article  PubMed  CAS  Google Scholar 

  12. Disis ML, Schiffman K, Gooley TA, McNeel DG, Rinn K, Knutson KL (2000) Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin Cancer Res 6:1347–1350

    PubMed  CAS  Google Scholar 

  13. Holmes JP, Benavides LC, Gates JD et al (2008) Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J Clin Oncol 26:3426–3433. doi:10.1200/JCO.2007.15.7842

    Article  PubMed  CAS  Google Scholar 

  14. Lesterhuis WJ, Schreibelt G, Scharenborg NM et al (2011) Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol Immunother 60:249–260. doi:10.1007/s00262-010-0942-x

    Article  PubMed  CAS  Google Scholar 

  15. Lopez MN, Pereda C, Segal G et al (2009) Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. J Clin Oncol 27:945–952. doi:10.1200/JCO.2008.18.0794

    Article  PubMed  CAS  Google Scholar 

  16. Perez SA, Kallinteris NL, Bisias S et al (2010) Results from a phase I clinical study of the novel Ii-Key/HER-2/neu(776–790) hybrid peptide vaccine in patients with prostate cancer. Clin Cancer Res 16:3495–3506. doi:10.1158/1078-0432.CCR-10-0085

    Article  PubMed  CAS  Google Scholar 

  17. Hoos A, Eggermont AM, Janetzki S et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102:1388–1397. doi:10.1093/jnci/djq310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ishikawa T, Kokura S, Sakamoto N et al (2013) Whole blood interferon-gamma levels predict the therapeutic effects of adoptive T-cell therapy in patients with advanced pancreatic cancer. Int J Cancer 133:1119–1125. doi:10.1002/ijc.28117

    Article  PubMed  CAS  Google Scholar 

  19. Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 7:651–658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Perez SA, von Hofe E, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M, Baxevanis CN (2010) A new era in anticancer peptide vaccines. Cancer 116:2071–2080. doi:10.1002/cncr.24988

    PubMed  CAS  Google Scholar 

  21. Sotiriadou NN, Kallinteris NL, Gritzapis AD et al (2007) Ii-Key/HER-2/neu(776–790) hybrid peptides induce more effective immunological responses over the native peptide in lymphocyte cultures from patients with HER-2/neu+ tumors. Cancer Immunol Immunother 56:601–613. doi:10.1007/s00262-006-0213-z

    Article  PubMed  CAS  Google Scholar 

  22. Voutsas IF, Gritzapis AD, Mahaira LG, Salagianni M, von Hofe E, Kallinteris NL, Baxevanis CN (2007) Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int J Cancer 121:2031–2041. doi:10.1002/ijc.22936

    Article  PubMed  CAS  Google Scholar 

  23. Perez SA, Anastasopoulou EA, Tzonis P, Gouttefangeas C, Kalbacher H, Papamichail M, Baxevanis CN (2013) AE37 peptide vaccination in prostate cancer: a 4-year immunological assessment updates on a phase I trial. Cancer Immunol Immunother 62:1599–1608. doi:10.1007/s00262-013-1461-3

    Article  PubMed  CAS  Google Scholar 

  24. Reyes D, Salazar L, Espinoza E et al (2013) Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients. Br J Cancer 109:1488–1497. doi:10.1038/bjc.2013.494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Prud’homme GJ (2007) Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 87:1077–1091. doi:10.1038/labinvest.3700669

    Article  PubMed  Google Scholar 

  26. Lippitz BE (2013) Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 14:e218–e228. doi:10.1016/S1470-2045(12)70582-X

    Article  PubMed  CAS  Google Scholar 

  27. de Vries IJ, Bernsen MR, Lesterhuis WJ et al (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23:5779–5787. doi:10.1200/JCO.2005.06.478

    Article  PubMed  Google Scholar 

  28. Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, Dorval T, Brichard V, Boon T (2001) A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci USA 98:10290–10295. doi:10.1073/pnas.161260098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Vukmanovic-Stejic M, Reed JR, Lacy KE, Rustin MH, Akbar AN (2006) Mantoux test as a model for a secondary immune response in humans. Immunol Lett 107:93–101. doi:10.1016/j.imlet.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  30. Nacher M, Blazquez AB, Shao B, Matesanz A, Prophete C, Berin MC, Frenette PS, Hidalgo A (2011) Physiological contribution of CD44 as a ligand for E-selectin during inflammatory T-cell recruitment. Am J Pathol 178:2437–2446. doi:10.1016/j.ajpath.2011.01.039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Singh SK, Tummers B, Schumacher TN et al (2013) The development of standard samples with a defined number of antigen-specific T cells to harmonize T cell assays: a proof-of-principle study. Cancer Immunol Immunother 62:489–501. doi:10.1007/s00262-012-1351-0

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin N. Baxevanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, S.A., Anastasopoulou, E.A., Papamichail, M. et al. AE37 peptide vaccination in prostate cancer: identification of biomarkers in the context of prognosis and prediction. Cancer Immunol Immunother 63, 1141–1150 (2014). https://doi.org/10.1007/s00262-014-1582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1582-3

Keywords

Navigation