Log in

A quantitative in vivo imaging platform for tracking pathological tau depositions and resultant neuronal death in a mouse model

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Depositions of tau fibrils are implicated in diverse neurodegenerative disorders, including Alzheimer’s disease, and precise assessments of tau pathologies and their impacts on neuronal survival are crucial for pursuing the neurodegenerative tau pathogenesis with and without potential therapies. We aimed to establish an in vivo imaging system to quantify tau accumulations with positron emission tomography (PET) and brain atrophy with volumetric MRI in rTg4510 transgenic mice modeling neurodegenerative tauopathies.

Methods

A total of 91 rTg4510 and non-transgenic control mice underwent PET with a tau radiotracer, 18F-PM-PBB3, and MRI at various ages (1.8–12.3 months). Using the cerebellum as reference, the radiotracer binding in target regions was estimated as standardized uptake value ratio (SUVR) and distribution volume ratio (DVR). Histopathological staining of brain sections derived from scanned animals was also conducted to investigate the imaging-neuropathology correlations.

Results

18F-PM-PBB3 SUVR at 40–60 min in the neocortex, hippocampus, and striatum of rTg4510 mice agreed with DVR, became significantly different from control values around 4–5 months of age, and progressively and negatively correlated with age and local volumes, respectively. Neocortical SUVR also correlated with the abundance of tau inclusions labeled with PM-PBB3 fluorescence, Gallyas-Braak silver impregnation, and anti-phospho-tau antibodies in postmortem assays. The in vivo and ex vivo 18F-PM-PBB3 binding was blocked by non-radioactive PM-PBB3. 18F-PM-PBB3 yielded a 1.6-fold greater dynamic range for tau imaging than its ancestor, 11C-PBB3.

Conclusion

Our imaging platform has enabled the quantification of tau depositions and consequent neuronal loss and is potentially applicable to the evaluation of candidate anti-tau and neuroprotective drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

PM-PBB3 and its radiolabeling precursor will be made available upon request. As we granted license on PM-PBB3 and related materials to APRINOIA Therapeutics Inc., material transfer will be subjected to a sublicense agreement with this company if there is potential for commercial application.

Code availability

The datasets supporting the current study have not been deposited in a public repository but are available from the lead contact upon reasonable request.

References

  1. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–59. https://doi.org/10.1146/annurev.neuro.24.1.1121.

    Article  CAS  PubMed  Google Scholar 

  2. Goedert M, Jakes R. Mutations causing neurodegenerative tauopathies. Biochem Biophys Acta. 2005;1739:240–50. https://doi.org/10.1016/j.bbadis.2004.08.007.

    CAS  PubMed  Google Scholar 

  3. Myers A, McGonigle P. Overview of Transgenic mouse models for Alzheimer’s disease. Curr Protoc Neurosci. 2019;89:e81. https://doi.org/10.1002/cpns.81.

    Article  PubMed  Google Scholar 

  4. Imbimbo BP, Ippati S, Watling M, Balducci C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimer’s Dement : J Alzheimer’s Assoc. 2021. https://doi.org/10.1002/alz.12453.

    Google Scholar 

  5. Panza F, Lozupone M, Seripa D, Daniele A, Watling M, Giannelli G, et al. Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol. 2020;16:213–28. https://doi.org/10.1038/s41582-020-0330-x.

    Article  CAS  PubMed  Google Scholar 

  6. Li C, Götz J. Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discovery. 2017;16:863–83. https://doi.org/10.1038/nrd.2017.155.

    Article  CAS  PubMed  Google Scholar 

  7. Appleby BS, Nacopoulos D, Milano N, Zhong K, Cummings JL. A review: treatment of Alzheimer’s disease discovered in repurposed agents. Dement Geriatr Cogn Disord. 2013;35:1–22. https://doi.org/10.1159/000345791.

    Article  CAS  PubMed  Google Scholar 

  8. Sato H, Takado Y, Toyoda S, Tsukamoto-Yasui M, Minatohara K, Takuwa H, et al. Neurodegenerative processes accelerated by protein malnutrition and decelerated by essential amino acids in a tauopathy mouse model. Sci Adv. 2021;7:eab5046. https://doi.org/10.1126/sciadv.abd5046.

    Article  CAS  Google Scholar 

  9. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science (New York, NY). 2005;309:476–81. https://doi.org/10.1126/science.1113694.

    Article  CAS  Google Scholar 

  10. Shelton LB, Baker JD, Zheng D, Sullivan LE, Solanki PK, Webster JM, et al. Hsp90 activator Aha1 drives production of pathological tau aggregates. Proc Natl Acad Sci USA. 2017;114:9707–12. https://doi.org/10.1073/pnas.1707039114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeVos SL, Corjuc BT, Commins C, Dujardin S, Bannon RN, Corjuc D, et al. Tau reduction in the presence of amyloid-β prevents tau pathology and neuronal death in vivo. Brain : J Neurol. 2018;141:2194–212. https://doi.org/10.1093/brain/awy117.

    Article  Google Scholar 

  12. Schaler AW, Runyan AM, Clelland CL, Sydney EJ, Fowler SL, Figueroa HY, et al. PAC1 receptor-mediated clearance of tau in postsynaptic compartments attenuates tau pathology in mouse brain. Sci Transl Med 2021;13. https://doi.org/10.1126/scitranslmed.aba7394

  13. Ishikawa A, Tokunaga M, Maeda J, Minamihisamatsu T, Shimojo M, Takuwa H, et al. In vivo visualization of tau accumulation, microglial activation, and brain atrophy in a mouse model of tauopathy rTg4510. J Alzheimer’s Dis : JAD. 2018;61:1037–52. https://doi.org/10.3233/jad-170509.

    Article  CAS  Google Scholar 

  14. Higuchi M, Maeda J, Ji B, Maruyama M, Okauchi T, Tokunaga M, et al. In-vivo visualization of key molecular processes involved in Alzheimer’s disease pathogenesis: insights from neuroimaging research in humans and rodent models. Biochem Biophys Acta. 2010;1802:373–88. https://doi.org/10.1016/j.bbadis.2010.01.003.

    CAS  PubMed  Google Scholar 

  15. Colato E, Chiotis K, Ferreira D, Mazrina MS, Lemoine L, Mohanty R, et al. Assessment of tau pathology as measured by 18F-THK5317 and 18F-flortaucipir PET and their relation to brain atrophy and cognition in Alzheimer’s disease. J Alzheimer’s Dis : JAD. 2021;84:103–17. https://doi.org/10.3233/jad-210614.

    Article  CAS  PubMed  Google Scholar 

  16. Berron D, Vogel JW, Insel PS, Pereira JB, **e L, Wisse LEM, et al. Early stages of tau pathology and its associations with functional connectivity, atrophy and memory. Brain : J Neurol. 2021;144:2771–83. https://doi.org/10.1093/brain/awab114.

    Article  Google Scholar 

  17. Shimada H, Kitamura S, Shinotoh H, Endo H, Niwa F, Hirano S, et al. Association between Aβ and tau accumulations and their influence on clinical features in aging and Alzheimer’s disease spectrum brains: A [(11)C]PBB3-PET study. Alzheimer’s Dement (Amsterdam, Netherlands). 2017;6:11–20. https://doi.org/10.1016/j.dadm.2016.12.009.

    Google Scholar 

  18. Tagai K, Ono M, Kubota M, Kitamura S, Takahata K, Seki C, et al. High-Contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies. Neuron. 2021;109:42-58.e8. https://doi.org/10.1016/j.neuron.2020.09.042.

    Article  CAS  PubMed  Google Scholar 

  19. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547:185–90. https://doi.org/10.1038/nature23002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang W, Tarutani A, Newell KL, Murzin AG, Matsubara T, Falcon B, et al. Novel tau filament fold in corticobasal degeneration. Nature. 2020;580:283–7. https://doi.org/10.1038/s41586-020-2043-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mishra SK, Yamaguchi Y, Higuchi M, Sahara N. Pick’s Tau fibril shows multiple distinct PET probe binding sites: insights from computational modelling. 2020;22. https://doi.org/10.3390/ijms22010349

  22. Brendel M, Jaworska A, Probst F, Overhoff F, Korzhova V, Lindner S, et al. Small-animal PET imaging of tau pathology with 18F-THK5117 in 2 transgenic mouse models. J Nucl Med : Off Publication, Soc Nucl Med. 2016;57:792–8. https://doi.org/10.2967/jnumed.115.163493.

    Article  CAS  Google Scholar 

  23. Brendel M, Barthel H, van Eimeren T, Marek K, Beyer L, Song M, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol. 2020;77:1408–19. https://doi.org/10.1001/jamaneurol.2020.2526.

    Article  PubMed  Google Scholar 

  24. Aguero C, Dhaynaut M, Normandin MD, Amaral AC, Guehl NJ, Neelamegam R, et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun. 2019;7:37. https://doi.org/10.1186/s40478-019-0686-6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Honer M, Gobbi L, Knust H, Kuwabara H, Muri D, Koerner M, et al. Preclinical evaluation of (18)F-RO6958948, (11)C-RO6931643, and (11)C-RO6924963 as novel PET radiotracers for imaging tau aggregates in Alzheimer disease. J Nucl Med : Off Publication, Soc Nucl Med. 2018;59:675–81. https://doi.org/10.2967/jnumed.117.196741.

    Article  CAS  Google Scholar 

  26. Chaney AM, Lopez-Picon FR, Serrière S, Wang R, Bochicchio D, Webb SD, et al. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Theranostics. 2021;11:6644–67. https://doi.org/10.7150/thno.56059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108. https://doi.org/10.1016/j.neuron.2013.07.037.

    Article  CAS  PubMed  Google Scholar 

  28. Weng CC, Hsiao IT, Yang QF, Yao CH, Tai CY, Wu MF, et al. Characterization of (18)F-PM-PBB3 ((18)F-APN-1607) uptake in the rTg4510 mouse model of tauopathy. Molecules (Basel, Switzerland). 2020;25. https://doi.org/10.3390/molecules25071750.

  29. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51. https://doi.org/10.1016/j.neuron.2007.01.010.

    Article  CAS  PubMed  Google Scholar 

  30. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14:399–415. https://doi.org/10.1038/s41582-018-0013-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shoeibi A, Olfati N, Litvan I. Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin Investig Drugs. 2018;27:349–61. https://doi.org/10.1080/13543784.2018.1460356.

    Article  CAS  PubMed  Google Scholar 

  32. Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, et al. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci : Off J Soc Neurosci. 2005;25:10637–47. https://doi.org/10.1523/jneurosci.3279-05.2005.

    Article  CAS  Google Scholar 

  33. Sahara N, Ren Y, Ward S, Binder LI, Suhara T, Higuchi M. Tau oligomers as potential targets for early diagnosis of tauopathy. J Alzheimer’s Dis : JAD. 2014;40(Suppl 1):S91–6. https://doi.org/10.3233/jad-132429.

    Article  Google Scholar 

  34. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab. 1996;16:834–40. https://doi.org/10.1097/00004647-199609000-00008.

    Article  CAS  Google Scholar 

  35. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab. 1996;16:42–52. https://doi.org/10.1097/00004647-199601000-00005.

    Article  CAS  Google Scholar 

  36. Ono M, Sahara N, Kumata K, Ji B, Ni R, Koga S, et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain : J Neurol. 2017;140:764–80. https://doi.org/10.1093/brain/aww339.

    Google Scholar 

  37. Hashimoto H, Kawamura K, Igarashi N, Takei M, Fujishiro T, Aihara Y, et al. Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J Nucl Med : Off Publication, Soc Nucl Med. 2014;55:1532–8. https://doi.org/10.2967/jnumed.114.139550.

    Article  CAS  Google Scholar 

  38. Ni R, Ji B, Ono M, Sahara N, Zhang MR, Aoki I, et al. Comparative in vitro and in vivo quantifications of pathologic tau deposits and their association with neurodegeneration in tauopathy mouse models. J Nucl Med: Off Publication, Soc Nucl Med. 2018;59:960–6. https://doi.org/10.2967/jnumed.117.201632.

    Article  CAS  Google Scholar 

  39. Takeuchi H, Imamura K, Ji B, Tsukita K, Enami T, Takao K, et al. Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. NPJ Vaccines. 2020;5:28. https://doi.org/10.1038/s41541-020-0172-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hashimoto H, Kawamura K, Takei M, Igarashi N, Fujishiro T, Shiomi S, et al. Identification of a major radiometabolite of [11C]PBB3. Nucl Med Biol. 2015;42:905–10. https://doi.org/10.1016/j.nucmedbio.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  41. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med : Off Publication, Soc Nucl Med. 2005;46:455–63.

    Google Scholar 

  42. Kang HG, Tashima H, Nishikido F, Akamatsu G, Wakizaka H, Higuchi M, et al. Initial results of a mouse brain PET insert with a staggered 3-layer DOI detector. Phys Med Biol. 2021;66. https://doi.org/10.1088/1361-6560/ac311c

  43. Li L, Liu FT, Li M, Lu JY, Sun YM, Liang X, et al. Clinical utility of (18) F-APN-1607 tau PET imaging in patients with progressive supranuclear palsy. Mov Disord : Off J Mov Disord Soc. 2021;36:2314–23. https://doi.org/10.1002/mds.28672.

    Article  CAS  Google Scholar 

  44. Pluta R, Ułamek-Kozioł M. Tau protein-targeted therapies in Alzheimer’s disease: current state and future perspectives. In: Huang X, editor. Alzheimer’s Disease: Drug Discovery. Brisbane (AU): Exon Publications Copyright: The Authors.; 2020

Download references

Acknowledgements

The authors thank Jun Maeda at the National Institutes for Quantum Science and Technology for critical discussions, and Masaki Tokunaga, Nobuhiro Nitta, Sayaka Shibata, Takeharu Minamihisamatsu, Kana Osawa, Shoko Uchida, and Sayuri Sasaki at the National Institutes for Quantum Science and Technology for technical assistance. The authors are grateful to the staff of the Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, for their technical assistance in radiopharmaceuticals production.

Funding

This study was supported in part by AMED under Grant Number JP19dk0207049, JP22dk0207063, JP21dm0207072, and JP21dk0207046, by JST Grant Number JPMJCR1652 and JPMJMS2024, and by MEXT/JSPS KAKENHI Grant Number JP16H05324, JP19K08005, JP17J06398, and JP17K07113.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Taeko Kimura, Maiko Ono, Chie Seki, Kazuaki Sampei, Masafumi Shimojo, and Yuhei Takado. The first draft of the manuscript was written by Taeko Kimura, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chie Seki or Yuhei Takado.

Ethics declarations

Ethics approval

Protocols for the present animal experiments were approved by the Animal Ethics Committees of the National Institutes for Quantum Science and Technology (approval number: 07-1049-31).

Conflict of interest

M.-R.Z. and M.H. hold patents on compounds related to the present report (JP 5422782/EP 12 884 742.3/CA2894994/HK1208672).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.27 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Ono, M., Seki, C. et al. A quantitative in vivo imaging platform for tracking pathological tau depositions and resultant neuronal death in a mouse model. Eur J Nucl Med Mol Imaging 49, 4298–4311 (2022). https://doi.org/10.1007/s00259-022-05898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05898-3

Keywords

Navigation