Log in

Computed tomography density changes of bone metastases after concomitant denosumab

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

 Abstract

Objective

To evaluate bone density changes at the level of normal trabecular bone and bone metastases (BMs) after denosumab (DM) treatment in oncologic patients.

Materials and methods

We retrospectively evaluated 31 consecutive adult patients with histologically confirmed solid tumors with at least one newly diagnosed bone metastatic lesion detected at CT. Patients received treatment with DM, 120 mg subcutaneous every 28 days for at least 6 months. Bone density was determined at the level of BMs and at the level of normal trabecular bone of lumbar vertebrae using a region of interest (ROI)–based approach.

Results

A progressive increase in CT bone density was demonstrated at the level of normal trabecular bone at 6 months (18% ± 5%) and 12 months (23% ± 7%) after the treatment begins. BMs showed a significant increase in CT bone density (p < 0.05) as compared to baseline after 6 months (57% ± 15%) and 12 months (1.06 ± 0.25 times higher) after treatment.

Conclusion

We have found that long-term treatment with DM increases bone density progressively in oncologic patients. This effect can be observed not only at the level of secondary lesions but also at the level of apparently normal trabecular bone and is more pronounced for osteolytic metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tubiana-Hulin M. Incidence, prevalence and distribution of bone metastases. Bone. 1991;12(Suppl 1):S9–10.

    Article  PubMed  Google Scholar 

  2. Quattrocchi CC, Errante Y, Mallio CA, Santini D, Tonini G, Zobel BB. Brain metastatic volume and white matter lesions in advanced cancer patients. J Neurooncol. 2013;113(3):451–8.

    Article  PubMed  Google Scholar 

  3. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.

    Article  CAS  PubMed  Google Scholar 

  4. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–9s.

    Article  PubMed  Google Scholar 

  5. Mirels H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res. 1989;249:256–64.

    Article  Google Scholar 

  6. Hill ME, Richards MA, Gregory WM, Smith P, Rubens RD. Spinal cord compression in breast cancer: a review of 70 cases. Br J Cancer. 1993;68(5):969–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grill V, Ho P, Body JJ, Johanson N, Lee SC, Kukreja SC, et al. Parathyroid hormone-related protein: elevated levels in both humoral hypercalcemia of malignancy and hypercalcemia complicating metastatic breast cancer. J Clin Endocrinol Metab. 1991;73(6):1309–15.

    Article  CAS  PubMed  Google Scholar 

  8. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22(14):2942–53.

    Article  PubMed  Google Scholar 

  9. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    Article  CAS  PubMed  Google Scholar 

  10. Mallio CA, Napolitano A, Castiello G, Giordano FM, D'Alessio P, Iozzino M, et al. Deep learning algorithm trained with COVID-19 pneumonia also identifies immune checkpoint inhibitor therapy-related pneumonitis. Cancers (Basel). 2021;13(4):652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quattrocchi CC, Mallio CA, Presti G, Beomonte Zobel B, Cardinale J, Iozzino M, et al. The challenge of COVID-19 low disease prevalence for artificial intelligence models: report of 1,610 patients. Quant Imaging Med Surg. 2020;10(9):1891–3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hayward JL, Carbone PP, Heusen JC, Kumaoka S, Segaloff A, Rubens RD. Assessment of response to therapy in advanced breast cancer. Br J Cancer. 1977;35(3):292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mundy GR. Mechanisms of bone metastasis. Cancer. 1997;80(Suppl. 8):1546–56.

    Article  CAS  PubMed  Google Scholar 

  14. Shih LY, Shih HN, Chen TH. Bone resorption activity of osteolytic metastatic lung and breast cancers. J Orthop Res. 2004;22(6):1161–7.

    Article  CAS  PubMed  Google Scholar 

  15. Body JJ. Clinical trials in metastatic breast cancer to bone: past–present–future. Can J Oncol. 1995;5(Suppl.1):16–27.

    PubMed  Google Scholar 

  16. Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. N Engl J Med. 1996;335(24):1785–91.

    Article  CAS  PubMed  Google Scholar 

  17. Purohit OP, Anthony C, Radstone CR, Owen J, Coleman RE. High-dose intravenous pamidronate for metastatic bone pain. Br J Cancer. 1994;70(3):554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N Engl J Med. 1996;334(8):488–93.

    Article  CAS  PubMed  Google Scholar 

  19. Paterson AH, Powles TJ, Kanis JA, McCloskey E, Hanson J, Ashley S. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993;11(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  20. Lahtinen R, Laakso M, Palva I, Virkkunen P, Elomaa I. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Lancet. 1992;340(8827):1049–52.

    Article  CAS  PubMed  Google Scholar 

  21. Saad F, Lipton A. Zoledronic acid is effective in preventing and delaying skeletal events in patients with bone metastases secondary to genitourinary cancers. BJU Int. 2005;96(7):964–9.

    Article  CAS  PubMed  Google Scholar 

  22. Brown JE, Cook RJ, Major P, Lipton A, Saad F, Smith M, et al. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst. 2005;97(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  23. Silverman SL. Paget disease of bone: therapeutic options. J Clin Rheumatol. 2008;14(5):299–305.

    Article  PubMed  Google Scholar 

  24. Kawada K, Minami H, Okabe K, Watanabe T, Inoue K, Sawamura M, et al. A multicenter and open label clinical trial of zoledronic acid 4 mg in patients with hypercalcemia of malignancy. Jpn J Clin Oncol. 2005;35(1):28–33.

    Article  PubMed  Google Scholar 

  25. Reed SD, Radeva JI, Glendenning GA, Coleman RE, Schulman KA. Economic evaluation of zoledronic acid versus pamidronate for the prevention of skeletal-related events in metastatic breast cancer and multiple myeloma. Am J Clin Oncol. 2005;28(1):8–16.

    Article  PubMed  Google Scholar 

  26. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Anderson J, et al. Systemic therapy for advancing or metastatic prostate cancer: a multi-arm, multistage randomized controlled trial. BJU Int. 2009;103(4):464–9.

    Article  CAS  PubMed  Google Scholar 

  27. Langer CJ. Selected clinical trials in advanced non-small-cell lung cancer. Clin Lung Cancer. 2010;11(5):358–9.

    Article  Google Scholar 

  28. Rosen LS, Gordon DH, Dugan W Jr, Major P, Eisenberg PD, Provencher L. Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion. Cancer. 2004;100(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  29. Body JJ. Rationale for the use of bisphosphonates in osteoblastic and osteolytic bone lesions. Breast. 2003;12(Suppl. 2):37–44.

    Article  Google Scholar 

  30. Santini D, Fratto ME, Vincenzi B, Galluzzo S, Tonini G. Zoledronic acid in the management of metastatic bone disease. Expert Opin Biol Ther. 2006;6(12):1333–48.

    Article  CAS  PubMed  Google Scholar 

  31. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821–31.

    Article  CAS  PubMed  Google Scholar 

  32. Wan Y, Zeng F, Tan H, Lu Y, Zhang Y, Zhao L, You R. Cost-effectiveness analyses of denosumab for osteoporosis: a systematic review. Osteopor Int. 2022;33(5):979–1015.

    Article  CAS  Google Scholar 

  33. Ko HW, Chiu CT, Wang CL, Yang TY, Liu CY, Yu CT, et al. Overall survival improvement in patients with epidermal growth factor receptor-mutated non-small cell lung cancer and bone metastasis treated with denosumab. Cancers (Basel). 2022;14((14):3470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quattrocchi CC, Dell'aia P, Errante Y, Occhicone F, Longo D, Virzì V, et al. Differential effect of zoledronic acid on normal trabecular and cortical bone density in oncologic patients with bone metastases. J Bone Oncol. 2012;1(1):24–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Quattrocchi CC, Santini D, Dell'aia P, Piciucchi S, Leoncini E, Vincenzi B, et al. A prospective analysis of CT density measurements of bone metastases after treatment with zoledronic acid. Skeletal Radiol. 2007;36(12):1121–7.

    Article  PubMed  Google Scholar 

  36. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  CAS  PubMed  Google Scholar 

  37. Kutleša Z, Jerković K, Ordulj I, Budimir MD. The effect of contrast media on CT measures of bone mineral density: a systematic review. Skeletal Radiol. 2023;52(4):687–94.

    Article  PubMed  Google Scholar 

  38. Zebaze RM, Libanati C, Austin M, Ghasem-Zadeh A, Hanley DA, Zanchetta JR, et al. Differing effects of denosumab and alendronate on cortical and trabecular bone. Bone. 2014;59:173–9.

    Article  CAS  PubMed  Google Scholar 

  39. Hanley DA, Adachi JD, Bell A, Brown V. Denosumab: mechanism of action and clinical outcomes. Int J Clin Pract. 2012;66(12):1139–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo A. Mallio.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallio, C.A., Greco, F., Gaudino, F. et al. Computed tomography density changes of bone metastases after concomitant denosumab. Skeletal Radiol 52, 1567–1575 (2023). https://doi.org/10.1007/s00256-023-04326-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04326-3

Keywords

Navigation