Log in

Novel strategy to improve the colonizing ability of Irpex lacteus in non-sterile wheat straw for enhanced rumen and enzymatic digestibility

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment with white rot fungi is a promising method to enhance the digestibility of lignocelluloses; however, sterilization of feedstocks prior to inoculation is one of the costliest steps. To improve the colonizing ability of white rot fungi under non-sterile condition, Irpex lacteus, Pleurotus ostreatus, and Phanerochaete chrysosporium were inoculated in the wheat straw ensiled for 28 days and incubated for 56 days to determine the changes in microbe counts, organic acid content, chemical composition, and rumen and enzymatic digestibility. Results showed that ensiling produced abundant organic acids and suppressed most microbes in wheat straw. Significant growth of I. lacteus was observed after 3 days of incubation, and molds were only detectable at day 7 in the group. At the end of incubation, aerobic bacteria and lactic acid bacteria decreased by 18% and 38% in the wheat straw treated with I. lacteus, but molds, aerobic bacteria, and lactic acid bacteria thrived in those treated with P. ostreatus and P. chrysosporium. Even more, P. ostreatus and P. chrysosporium increased the lignin content of the ensiled wheat straw by 34% and 65%. However, I. lacteus selectively degraded lignin by 28% and improved the rumen and enzymatic digestibility by 18% and 34%. The finding indicates that ensiling prior to fermentation with I. lacteus is an effective method to control spoilage microbes and to enhance the rumen and enzymatic digestibility of wheat straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Funding

This work was financially supported by Ministry of Science and Technology of the People’s Republic of China (No. 2015DFG32360), Chinese Academy of Engineering (No. 2019ZCQ04), and Shaanxi **ntiandi Grass Industry Co., Ltd., China (No. 2018K0947).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuncheng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, D., Zuo, S., Ren, J. et al. Novel strategy to improve the colonizing ability of Irpex lacteus in non-sterile wheat straw for enhanced rumen and enzymatic digestibility. Appl Microbiol Biotechnol 104, 1347–1355 (2020). https://doi.org/10.1007/s00253-019-10315-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10315-1

Keywords

Navigation