Log in

Enzyme kinetics of fungal glucuronoyl esterases on natural lignin-carbohydrate complexes

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glucuronoyl esterases (CE15 family) enable targeted cleavage of ester linkages in lignin-carbohydrate complexes (LCCs), particularly those linking lignin and glucuronoyl residues in xylan. A substantial challenge in characterization and kinetic analysis of CE15 enzymes has been the lack of proper substrates. Here, we present an assay using an insoluble LCC-rich lignin fraction from birch; lignin-rich pellet (LRP). The assay employs quantification of enzyme reaction products by LC-MS. The kinetics of four fungal CE15 enzymes, PsGE, CuGE, TtGE, and AfuGE originating from lignocellulose-degrading fungi Punctularia strigosozonata, Cerrena unicolor, Thielavia terrestris, and Armillaria fuscipes respectively were characterized and compared using this new assay. All four enzymes had activity on LRP and showed a clear preference for the insoluble substrate compared with smaller soluble LCC mimicking esters. End-product profiles were near identical for the four enzymes but differences in kinetic parameters were observed. TtGE possesses an alternative active site compared with the three other enzymes as it has the position of the catalytic glutamic acid occupied by a serine. TtGE performed poorly compared with the other enzymes. We speculate that glucuronoyl LCCs are not the preferred substrate of TtGE. Removal of an N-terminal CBM on CuGE affected the catalytic efficiently of the enzyme by reducing Kcat by more than 30%. Reaction products were detected from all four CE15s on a similar substrate from spruce indicating a more generic GE activity not limited to the hardwood. The assay with natural substrate represents a novel tool to study the natural function and kinetics of CE15s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgement

We sincerely thank Novozymes A/S for the donation of GH10 containing preparation.

Funding

This work was partly financed by the grant NNF15OC0015222 funded by the Novo Nordisk Foundation and also supported by the Bio-Value Strategic Platform for Innovation and Research, co-funded by The Danish Council for Strategic Research and The Danish Council for Technology and Innovation, case no: 0603-00522B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Wittrup Agger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosbech, C., Holck, J., Meyer, A. et al. Enzyme kinetics of fungal glucuronoyl esterases on natural lignin-carbohydrate complexes. Appl Microbiol Biotechnol 103, 4065–4075 (2019). https://doi.org/10.1007/s00253-019-09797-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09797-w

Keywords

Navigation