Log in

Conversion of apple pomace waste to ethanol at industrial relevant conditions

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Apple pomace samples were evaluated for conversion to ethanol at industrial relevant conditions. Biomass degradation efficiency by commercial enzymes was evaluated at 20 % solid loading for dilute sulfuric acid, calcium oxide, and autoclave without any chemical (control) apple pomace samples. The control and calcium oxide-pretreated pomace provided similar sugar yields, while dilute sulfuric acid pretreatment resulted in reduced sugar yields. The control and calcium oxide-pretreated pomace hydrolysate were fermented to ethanol using a native Saccharomyces cerevisiae yeast strain, producing 38.8 and 36.9 g/L of ethanol, respectively. When control apple pomace sample loading was increased from 20 to 30 %, 57.5 and 50.1 g/L of glucose and fructose was produced, respectively. Lastly, we found that unhydrolyzed solids (UHS) present during fermentation had little effect on ethanol yield, as 53.6 and 53.8 g/L of ethanol were produced with and without UHS, respectively. Overall, ethanol yields were 134 g per kg of dry apple pomace. A complete process mass balance for enzyme hydrolysis and ethanol fermentation is provided in this manuscript. These results show that apple pomace is an excellent feedstock for producing ethanol that could be either used as biofuel or as beverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai X, Zhang H, Ren S (2013) Antioxidant activity and HPLC analysis of polyphenol-enriched extracts from industrial apple pomace. J Sci Food Agric 93:2502–2506. doi:10.1002/jsfa.6066

    Article  CAS  PubMed  Google Scholar 

  • Benz JP, Protozko RJ, Andrich JMS, Bauer S, Dueber JE, Somerville CR (2014) Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation process. Biotechnol Biofuels 7(20):1–13. doi:10.1186/1754-6834-7-20

    Google Scholar 

  • Bhalla TC, Joshi M (1994) Protein enrichment of apple pomace by co-culture of cellulolytic moulds and yeasts. World J Microbiol Biotechnol 10:116–117

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Giradud T, Smulders MJM, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apple. Trends Genet 30(2):57–65

    Article  CAS  PubMed  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK, Verma M (2012) Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase production through solid-state fermentation. Ind Crop Prod 38:6–13. doi:10.1016/j.indcrop.2011.12.036

    Article  CAS  Google Scholar 

  • Edwards M, Doran-Peterson J (2012) Pectin-rich biomass as feedstock for fuel and ethanol production. Appl Microbiol Biotechnol 95:565–575. doi:10.1007/s00253-012-4173-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2015) Food and Agriculture Organization of the United Nations Statistics, (faostat3.fao.org)

  • Gassara F, Brar SK, Pelltier F, Verma M, Godbout S, Tyagi RD (2011) Pomace waste management scenarios in Quebec—impact on greenhouse gas emissions. J Hazard Mater 192:1178–1185. doi:10.1016/j.jhazmat.2011.06.026

    Article  CAS  PubMed  Google Scholar 

  • Grigoras CG, Destandau E, Fougere L, Elfakir C (2013) Evaluation of apple pomace extracts as a source of bioactive compounds. Ind Crop Prod 49:794–804. doi:10.1016/j.indcrop.2013.06.026

    Article  CAS  Google Scholar 

  • Gullón B, Garrote G, Alonso JL, Parajó JC (2007) Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous Saccharification and fermentation: a response surface methodology assessment. J Agric Food Chem 55:5580–5587. doi:10.1021/jf070442v

    Article  PubMed  Google Scholar 

  • Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. Technical Report: NREL/TP-510-42620

  • Hang YD, Lee CY, Woodams EE (1982) A solid state fermentation system for production of ethanol from apple pomace. J Food Sci 47:1851–1852. doi:10.1111/j.1365-2621.1982.tb12897.x

    Article  CAS  Google Scholar 

  • Harris S, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18(8):426–430

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Cao M, Guo H, Qi W, Su R, He Z (2014) Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, Multienzyme formulation and fed-batch operation. J Agric Food Chem 62:4643–4651. doi:10.1021/jf405172a

    Article  CAS  PubMed  Google Scholar 

  • Joshi VK, Sandhu DK (1996) Preparation and evaluation of an animal feed byproduct produced by solid-state fermentation of apple pomace. Bioresour Technol 56:251–255. doi:10.1016/0960-8524(96)00040-5

    Article  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. doi:10.1016/j.pbi.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14(578):597. doi:10.1016/j.rser.2009.10.003

    Google Scholar 

  • NASS, (2015) National Agricultural Statistics Service, (nass.usda.gov/Quick_Stats).

  • Parmar I, Rupasinghe HPV (2012) Optimization of dilute acid-based pretreatment and application of laccase on apple pomace. Bioresour Technol 124:433–439. doi:10.1016/j.biortech.2012.07.030

    Article  CAS  PubMed  Google Scholar 

  • Parmar I, Rupasinghe HPV (2013) Bioconversion of apple pomace into ethanol and acetic acid: enzymatic hydrolysis and fermentation. Bioresour Technol 130:613–620. doi:10.1016/j.biortech.2012.12.084

    Article  CAS  PubMed  Google Scholar 

  • Pourbafrani M, Forgács G, Horváth I, Niklasson C, Taherzadeh MJ (2010) Production of biofuels, limonene and pectin from citrus wastes. Bioresour Technol 101:4246–4250. doi:10.1016/j.biortech.2010.01.077

    Article  CAS  PubMed  Google Scholar 

  • Rezić T, Oros D, Marković I, Kracher D, Ludwig R, Šantek B (2013) Integrated hydrolyzation and fermentation of sugar beet pulp to bioethanol. J Microbiol Biotechnol 23:1244–1252. doi:10.4014/jmb.1210.10013

    Article  PubMed  Google Scholar 

  • Sluiter J, Sluite A (2010) Summative mass closure. Laboratory Analytical Procedure (LAP) Review and Integration: Feedstocks. Technical Report: NREL/TP-510-48087

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. Technical Report: NREL/TP-510-42622

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory. Technical Report: NREL/TP-510-4261

  • Tenenbaum DJ (2008) Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect 116(6):254–257

    Article  Google Scholar 

  • Uppungundla N, Sousa L, Chundawat SPS, Yu X, Simmons B, Singh S, Gao X, Kumar R, Wyman CE, Dale BE, Balan V (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEX pretreated corn Stover. Biotechnol Biofuels 7:72. doi:10.1186/1754-6834-7-72

    Article  Google Scholar 

  • Vendruscolo F, Albuquerque PM, Streit F (2008) Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28:1–12. doi:10.1080/07388550801913840

    Article  CAS  PubMed  Google Scholar 

  • Villas-Bôas SG, Esposito E, Mendosca MM (2003) Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus. World J Microbiol Biotechnol 19:461–467

    Article  Google Scholar 

  • Wang S, Chen F, Wu J, Wang Z, Liao X, Hu X (2007) Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. J Food Eng 78:673–700. doi:10.1016/j.jfoodeng.2005.11.008

    Article  Google Scholar 

  • Wyman CE, Dale BE, Elander R, Holtzapple M, Landish MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. doi:10.1016/j.biortech.2005.01.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank William Koucky (Northwestern Biodiesel, Traverse City, MI) for providing apple pomace samples for this project. We thank funding from the state of Michigan through the Small Company Innovation Program (SCIP). This is a program of the Michigan Corporate Relations Network (MCRN). We thank Novozymes for supplying the commercial enzymes used in this project and Lee Alexander and Christa Gunawan for analyzing HPLC samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh Balan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

No animal or humans were involved in this study.

Funding source

This project was partially funded by William Koucky (NorthWestern Biodiesel, Traverse City, MI) and the state of Michigan through Small Company Innovation Program (SCIP).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magyar, M., da Costa Sousa, L., **, M. et al. Conversion of apple pomace waste to ethanol at industrial relevant conditions. Appl Microbiol Biotechnol 100, 7349–7358 (2016). https://doi.org/10.1007/s00253-016-7665-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7665-7

Keywords

Navigation