Log in

Geographic Distance and Habitat Type Influence Fungal Communities in the Arctic and Antarctic Sites

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The Antarctic and Arctic regions are collectively referred to as the “Two Poles” of the earth and have extremely harsh climate conditions and fragile ecosystems. Until now, the biogeography of the fungal communities in the bipolar regions is not well known. In this study, we focused on the fungal communities in 110 samples collected from four habitat types (i.e., soil, vascular plant, freshwater, moss) in the Antarctic and Arctic sites using high-throughput sequencing. The data showed that the diversity and composition of fungal communities were both geographically patterned and habitat-patterned. ANOSIM tests revealed statistically significant differences among fungal communities in the eight sample types (R = 0.5035, p < 0.001) and those in the bipolar regions (R = 0.32859, p < 0.001). Only 396 OTUs (14.8%) were shared between the bipolar sites. Fungal communities in the four habitat types clustered together in the Arctic site but were separate from those of the Antarctic site, indicating that geographic distance was a more important determinant of fungal communities in the bipolar sites. These findings offer insights into the present-day biogeography of fungal communities in the bipolar sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baas Becking LGM. Geobiologie of inleiding tot de milieukunde. The Hague, the Netherlands: W.P. Van Stockum & Zoon. 1934.

  2. Whitfield J (2005) Biogeography: Is Everything Everywhere? Science 310:960–961

    Article  CAS  PubMed  Google Scholar 

  3. Ribeiro KF, Duarte L, Crossetti LO (2018) Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia 820:23–48

    Article  CAS  Google Scholar 

  4. Marnie ER, Ragan MC (2012) Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’. Ann Bot. 110:213–222

    Article  Google Scholar 

  5. Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 4:102–112

  6. Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr. 84:3–20

    Article  Google Scholar 

  7. Põlme S, Bahram M, Kõljalg U, Tedersoo L (2014) Global biogeography of Alnus-associated Frankia actinobacteria. New Phytol. 204:979–988

    Article  PubMed  Google Scholar 

  8. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, de Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  Google Scholar 

  9. Fröhlich-Nowoisky J, Burrows SM, **e Z, Engling G, Solomon PA, Fraser MP, Mayol-Bracero OL, Artaxo P, Begerow D, Conrad R, Andreae MO, Després VR, Pöschl U (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136

    Article  Google Scholar 

  10. Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  11. Cameron KA, Hodson AJ, Mark OA (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol. 82:254–267

    Article  CAS  PubMed  Google Scholar 

  12. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the high arctic. Appl Environ Microb. 78:549–559

    Article  Google Scholar 

  13. Tanner K, Marti JM, Belliure J, Fernandez-Mendez M, Molina-Menor E, Pereto J, Porcar M (2017) Polar solar panels: Arctic and Antarctic microbiomes display similar taxonomic profiles. Env Microbiol Rep. 10:75–79

    Article  Google Scholar 

  14. Kleinteich J, Hildebrand F, Bahram M, Voigt AY, Wood SA, Jungblut AD, Küpper FC, Quesada A, Camacho A, Pearce DA, Convey P, Vincent WF, Zarfl C, Bork P, Dietrich DR (2017) Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change. Front Ecol Evol. 5:137

    Article  Google Scholar 

  15. Cox F, Newsham KK, Bol R, Dungait JA, Robinson CH (2016) Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol Lett. 19:528–536

    Article  PubMed  Google Scholar 

  16. Wookey PA, Welker JM, Parsons AN, Press MC, Callaghan TV, Lee JA (1994) Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high arctic polar semi-desert. Oikos 70:131–139

    Article  Google Scholar 

  17. Olech M (2004) Lichens of King George Island. Krakow. The institute of botany of the Jagiellonian University, Antarctica

    Google Scholar 

  18. Øvstedal DO, Lewis-Smith RI (2001) Lichens of Antarctica and South Georgia: guide to their identification and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  19. Zhang T, Wei XL, Zhang YQ, Liu HY, Yu LY (2015) Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci. Rep. 5:14850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White TJ, Bruns T, Lee SJWT, Taylor J (1990) L. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322

    Google Scholar 

  21. Zhang T, Wang NF, Li YY (2020) Soil fungal community composition differs significantly among the Antarctic, Arctic, and Tibetan Plateau. Extremophiles 24:821–829

    Article  CAS  PubMed  Google Scholar 

  22. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  24. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ Microb. 73:5261–5267

    Article  CAS  Google Scholar 

  26. Abarenkov K, Zirk A, Piirmann T, Pohonen R, Ivanov F, Nilsson RH, Koljalg U (2020) UNITE QIIME release for eukaryotes 2. Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786388

  27. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, **a J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45:W180–W188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chong J, Liu P, Zhou G, **a J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 15:799–821

    Article  CAS  PubMed  Google Scholar 

  29. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  30. Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, Lepinay C (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun. 10:1–9

    Article  Google Scholar 

  31. Yuan C, Zhang L, Hu H, Wang J, Shen J, He J (2018) The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. J Soil Sediment 18:1795–1805

    Article  CAS  Google Scholar 

  32. Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol. 14:434–447

    Article  CAS  PubMed  Google Scholar 

  33. Mittelbach GG, Schemske DW (2015) Ecological and evolutionary perspectives on community assembly. Trends Ecol Evol. 30:241–247

    Article  PubMed  Google Scholar 

  34. Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci. 4:413–420

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (NSFC) (Grant nos. 31670025), Projects of the Chinese Arctic and Antarctic Administration, State Oceanic Administration (2013YR06006), National Infrastructure of Microbial Resources (Grant no. NIMR-2018-3), and CAMS Innovation Fund for Medical Sciences (Grant no. 2016-I2M-2-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhang or Li-Yan Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 1.22 mb)

ESM 2

(DOCX 32 kb)

ESM 3

(XLSX 990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, NF. & Yu, LY. Geographic Distance and Habitat Type Influence Fungal Communities in the Arctic and Antarctic Sites. Microb Ecol 82, 224–232 (2021). https://doi.org/10.1007/s00248-021-01742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01742-7

Keywords

Navigation