Log in

Early Divergence of the C-Terminal Variable Region of Troponin T Via a Pair of Mutually Exclusive Alternatively Spliced Exons Followed by a Selective Fixation in Vertebrate Heart

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Troponin T (TnT) is the thin filament anchoring subunit of troponin complex and plays an organizer role in the Ca2+-regulation of striated muscle contraction. From an ancestral gene emerged ~ 700 million years ago in Bilateria, three homologous genes have evolved in vertebrates to encode muscle type-specific isoforms of TnT. Alternative splicing variants of TnT are present in vertebrate and invertebrate muscles to add functional diversity. While the C-terminal region of TnT is largely conserved, it contains an alternatively spliced segment emerged early in C. elegans, which has evolved into a pair of mutually exclusive exons in arthropods (10A and 10B of Drosophila TpnT gene) and vertebrates (16 and 17 of fast skeletal muscle Tnnt3 gene). The C-terminal alternatively spliced segment of TnT interfaces with the other two subunits of troponin with functional significance. The vertebrate cardiac TnT gene that emerged from duplication of the fast TnT gene has eliminated this alternative splicing by the fixation of an exon 17-like constitutive exon, indicating a functional value in slower and rhythmic contractions. The vertebrate slow skeletal muscle TnT gene that emerged from duplication of the cardiac TnT gene has the exon 17-like structure conserved, indicating its further function in sustained and fatigue resistant contractions. This functionality-based evolution is consistent with the finding that exon 10B-encoded segment of Drosophila TnT homologous to the exon 17-encoded segment of vertebrate fast TnT is selectively expressed in insect heart and leg muscles. The evolution of the C-terminal variable region of TnT demonstrates a submolecular mechanism in modifying striated muscle contractility and for the treatment of muscle and heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

ELISA:

Enzyme-linked immunosorbent assay

mAb:

Monoclonal antibody

PBS:

Phosphate-buffered saline

RT-PCR:

Reverse transcription-coupled PCR

SDS-PAGE:

SDS–polyacrylamide gel electrophoresis

TBS:

Tris-buffered saline

TnC:

Troponin C

TnI:

Troponin I

TnT:

Troponin T

References

  • Biesiadecki BJ, ** JP (2011) A high-throughput solid-phase microplate protein-binding assay to investigate interactions between myofilament proteins. J Biomed Biotechnol 2011:421701

    Article  PubMed  PubMed Central  Google Scholar 

  • Bullard B, Pastore A (2011) Regulating the contraction of insect flight muscle. J Muscle Res Cell Motil 32:303

    Article  CAS  PubMed  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012

  • Cao T, Thongam U, ** JP (2019) Invertebrate troponin: insights into the evolution and regulation of striated muscle contraction. Arch Biochem Biophys 666:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao T, Sujkowski A, Cobb T, Wessells RJ, ** JP (2020) The glutamic acid-rich-long C-terminal extension of troponin T has a critical role in insect muscle functions. J Biol Chem 295:3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri T, Mukherjea M, Sachdev S, Randall JD, Sarkar S (2005) Role of the fetal and alpha/beta exons in the function of fast skeletal troponin T isoforms: correlation with altered Ca2+ regulation associated with development. J Mol Biol 352:58

    Article  CAS  PubMed  Google Scholar 

  • Chong SM, ** JP (2009) To investigate protein evolution by detecting suppressed epitope structures. J Mol Evol 68:448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng HZ, ** JP (2019) Transgenic expression of carbonic anhydrase III in cardiac muscle demonstrates a mechanism to tolerate acidosis. Am J Physiol Cell Physiol 317:C922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng HZ, Biesiadecki BJ, Yu ZB, Hossain MM, ** JP (2008) Restricted N-terminal truncation of cardiac troponin T: a novel mechanism for functional adaptation to energetic crisis. J Physiol 586:3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu**o N, Shimizu M, Ino H, Yamaguchi M, Yasuda T, Nagata M, Konno T, Mabuchi H (2002) A novel mutation Lys273Glu in the cardiac troponin T gene shows high degree of penetrance and transition from hypertrophic to dilated cardiomyopathy. Am J Cardiol 89:29

    Article  CAS  PubMed  Google Scholar 

  • García-Maceira T, García-Maceira FI, González-Reyes JA, Paz-Rojas E (2020) Highly enhanced ELISA sensitivity using acetylated chitosan surfaces. BMC Biotechnol 20:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853

    Article  CAS  PubMed  Google Scholar 

  • Huang QQ, ** JP (1999) Preserved close linkage between the genes encoding troponin I and troponin T, reflecting an evolution of adapter proteins coupling the Ca(2+) signaling of contractility. J Mol Evol 49:780

    Article  CAS  PubMed  Google Scholar 

  • ** JP (1996) Alternative RNA splicing-generated cardiac troponin T isoform switching: a non-heart-restricted genetic programming synchronized in develo** cardiac and skeletal muscles. Biochem Biophys Res Commun 225:883

    Article  CAS  PubMed  Google Scholar 

  • ** JP (2016) Evolution, regulation, and function of N-terminal variable region of troponin T: modulation of muscle contractility and beyond. Int Rev Cell Mol Biol 321:1

    Article  CAS  PubMed  Google Scholar 

  • ** JP, Chong SM (2010) Localization of the two tropomyosin-binding sites of troponin T. Arch Biochem Biophys 500:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** J-P, Wang J, Ogut O (1998) Developmentally regulated muscle type-specific alternative splicing of the COOH-terminal variable region of fast skeletal muscle troponin T and an aberrant splicing pathway to encode a mutant COOH-terminus. Biochem Biophys Res Commun 242:540

    Article  CAS  PubMed  Google Scholar 

  • ** JP, Yang FW, Yu ZB, Ruse CI, Bond M, Chen A (2001) The highly conserved COOH terminus of troponin I forms a Ca2+-modulated allosteric domain in the troponin complex. Biochemistry 40:2623

    Article  CAS  PubMed  Google Scholar 

  • ** JP, Brotto MA, Hossain MM, Huang QQ, Brotto LS, Nosek TM, Morton DH, Crawford TO (2003) Truncation by Glu180 nonsense mutation results in complete loss of slow skeletal muscle troponin T in a lethal nemaline myopathy. J Biol Chem 278:26159

    Article  CAS  PubMed  Google Scholar 

  • ** JP, Chong SM, Hossain MM (2007) Microtiter plate monoclonal antibody epitope analysis of Ca2+- and Mg2+-induced conformational changes in troponin C. Arch Biochem Biophys 466:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** JP, Zhang Z, Bautista JA (2008) Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr 18:93

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Goren A, Ast G (2008) Alternative splicing: current perspectives. BioEssays 30:38

    Article  CAS  PubMed  Google Scholar 

  • Limpitikul WB, Viswanathan MC, O’Rourke B, Yue DT, Cammarato A (2018) Conservation of cardiac L-type Ca(2+) channels and their regulation in Drosophila: a novel genetically-pliable channelopathic model. J Mol Cell Cardiol 119:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JJ (1981) Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate the intermediate filaments of cultured cells. Proc Natl Acad Sci U S A 78:2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JJ, Chou CS, Lin JL (1985) Monoclonal antibodies against chicken tropomyosin isoforms: production, characterization, and application. Hybridoma 4:223

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Hossain MM, Chen X, ** J-P (2017) Mechanoregulation of SM22α/transgelin. Biochemistry 56:5526

    Article  CAS  PubMed  Google Scholar 

  • Nongthomba U, Ansari M, Thimmaiya D, Stark M, Sparrow J (2007) Aberrant splicing of an alternative exon in the Drosophila troponin-T gene affects flight muscle development. Genetics 177:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ocorr K, Zambon A, Nudell Y, Pineda S, Diop S, Tang M, Akasaka T, Taylor E (2017) Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations. PLoS Genet 13:e1006786

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogut O, ** JP (1998) Developmentally regulated, alternative RNA splicing-generated pectoral muscle-specific troponin T isoforms and role of the NH2-terminal hypervariable region in the tolerance to acidosis. J Biol Chem 273:27858

    Article  CAS  PubMed  Google Scholar 

  • Perry SV (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19:575–602

    Article  CAS  PubMed  Google Scholar 

  • Robinson P, Griffiths PJ, Watkins H, Redwood CS (2007) Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res 101:1266

    Article  CAS  PubMed  Google Scholar 

  • Smillie LB (1982) Preparation and identification of alpha- and beta-tropomyosins. Methods Enzymol 85(Pt B):234

    Article  CAS  PubMed  Google Scholar 

  • Soler Cd, Daczewska M, Da Ponte JP, Dastugue B, Jagla K (2004) Coordinated development of muscles and tendons of the Drosophilaleg. Development 131:6041

    Article  CAS  PubMed  Google Scholar 

  • Soler C, Laddada L, Jagla K (2016) Coordinated development of muscles and tendon-like structures: early interactions in the Drosophila Leg. Front Physiol 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Yamashita A, Maeda K, Maéda Y (2003) Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature 424:35

    Article  CAS  PubMed  Google Scholar 

  • Tobacman LS (2021) Troponin revealed: uncovering the structure of the thin filament on-off switch in striated muscle. Biophys J 120:1

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ (2005) Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci USA 102:5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogler G, Ocorr K (2009) Visualizing the beating heart in Drosophila. J Visualized Exp: Jove. https://doi.org/10.3791/1425

    Article  PubMed Central  Google Scholar 

  • Wang J, ** JP (1997) Primary structure and developmental acidic to basic transition of 13 alternatively spliced mouse fast skeletal muscle troponin T isoforms. Gene 193:105

    Article  CAS  PubMed  Google Scholar 

  • Wang J, ** JP (1998) Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. Biochemistry 37:14519

    Article  CAS  PubMed  Google Scholar 

  • Wei B, ** JP (2016) TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene 582:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei B, Lu Y, ** JP (2014) Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue. J Physiol 592:1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QL, Jha PK, Du Y, Leavis PC, Sarkar S (1995) Overproduction and rapid purification of human fast skeletal beta troponin T using Escherichia coli expression vectors: functional differences between the alpha and beta isoforms. Gene 155:225

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Teng J, Cooper TA (1993) The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol 13:3660

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Stephen Chong participated in this study when our research group was at the Evanston Northwestern Healthcare Research Institute. We thank Prof. Jim Lin at University of Iowa for the T12 and CH1 mAbs. This study was supported by grants from the National Institutes of Health (HL127691 and HL138007 to JPJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. **.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling editor: John Bracht.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3336 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, T., Akhter, S. & **, JP. Early Divergence of the C-Terminal Variable Region of Troponin T Via a Pair of Mutually Exclusive Alternatively Spliced Exons Followed by a Selective Fixation in Vertebrate Heart. J Mol Evol 90, 452–467 (2022). https://doi.org/10.1007/s00239-022-10075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-022-10075-z

Keywords

Navigation