Log in

Signatures of Relaxed Selection in the CYP8B1 Gene of Birds and Mammals

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The CYP8B1 gene is known to catalyse reactions that determine the ratio of primary bile salts and the loss of this gene has recently been linked to lack of cholic acid in the bile of naked-mole rats, elephants and manatees using forward genomics approaches. We screened the CYP8B1 gene sequence of more than 200 species and test for relaxation of selection along each terminal branch. The need for retaining a functional copy of the CYP8B1 gene is established by the presence of a conserved open reading frame across most species screened in this study. Interestingly, the dietary switch from bovid to cetacean species is accompanied by an exceptional ten amino acid extension at the C-terminal end through a single base frame-shift deletion. We also verify that the coding frame disrupting mutations previously reported in the elephant are correct, are shared by extinct Elephantimorpha species and coincide with the dietary switch to herbivory. Relaxation of selection in the CYP8B1 gene of the wombat (Vombatus ursinus) also corresponds to drastic change in diet. In summary, our forward genomics-based screen of bird and mammal species identifies recurrent changes in the selection landscape of the CYP8B1 gene concomitant with a change in dietary lipid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albalat R, Cañestro C (2016) Evolution by gene loss. Nat Rev Genet 17:379–391

    Article  CAS  PubMed  Google Scholar 

  • Anderson CL, Strope CL, Moriyama EN (2011) SuiteMSA: visual tools for multiple sequence alignment comparison and molecular sequence simulation. BMC Bioinform 12:184

    Article  Google Scholar 

  • Bonde Y, Eggertsen G, Rudling M (2016) Mice abundant in muricholic bile acids show resistance to dietary induced steatosis, weight gain, and to impaired glucose metabolism. PLoS ONE 11:e0147772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornelöv S, Seroussi E, Yosefi S et al (2017) Correspondence on Lovell et al.: identification of chicken genes previously assumed to be evolutionarily lost. Genome Biol 18:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-H, Zhao H (2019) Evolution of digestive enzymes and dietary diversification in birds. PeerJ 7:e6840

    Article  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Posada D, Kozlov AM et al (2019) ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. bioRxiv. https://doi.org/10.1101/612903

    Article  Google Scholar 

  • Dunn JG, Foo CK, Belletier NG et al (2013) Ribosome profiling reveals pervasive and regulated stop codon readthrough in drosophila melanogaster. Elife 2:e01179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards HM (1962) Observations on feeding cholic acid to broilers. Poult Sci 41:340–341

    Article  Google Scholar 

  • Eggert T, Bakonyi D, Hummel W (2014) Enzymatic routes for the synthesis of ursodeoxycholic acid. J Biotechnol 191:11–21

    Article  CAS  PubMed  Google Scholar 

  • Endo Y, Kamei K-I, Inoue-Murayama M (2018) Genetic signatures of lipid metabolism evolution in Cetacea since the divergence from terrestrial ancestor. J Evol Biol 31:1655–1665

    Article  CAS  PubMed  Google Scholar 

  • Foote AD, Liu Y, Thomas GWC et al (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47:272–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foote AD, Vijay N, Ávila-Arcos MC et al (2016) Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat Commun 7:11693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groen JN, Capraro D, Morris KV (2014) The emerging role of pseudogene expressed non-coding RNAs in cellular functions. Int J Biochem Cell Biol 54:350–355

    Article  CAS  PubMed  Google Scholar 

  • Hagey LR, Møller PR, Hofmann AF, Krasowski MD (2010a) Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway. Physiol Biochem Zool 83:308–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagey LR, Vidal N, Hofmann AF, Krasowski MD (2010b) Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol Biol 10:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MW, Demuth JP, Han S-G (2007a) Accelerated rate of gene gain and loss in primates. Genetics 177:1941–1949

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn MW, Han MV, Han S-G (2007b) Gene family evolution across 12 drosophila genomes. PLoS Genet 3:e197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30:1987–1997

    Article  CAS  PubMed  Google Scholar 

  • Hecker N, Sharma V, Hiller M (2017) Transition to an aquatic habitat permitted the repeated loss of the pleiotropic KLK8 gene in mammals. Genome Biol Evol 9:3179–3188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiller M, Schaar BT, Indjeian VB et al (2012) A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep 2:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51:226–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Ng PC (2012) Predicting the effects of frameshifting indels. Genome Biol 13:R9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt BG, Ometto L, Wurm Y et al (2011) Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc Natl Acad Sci 108:15936–15941

    Article  PubMed  PubMed Central  Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  • Johnson BR (2018) Taxonomically restricted genes are fundamental to biology and evolution. Front Genet 9:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungreis I, Lin MF, Spokony R et al (2011) Evidence of abundant stop codon readthrough in drosophila and other metazoa. Genome Res 21:2096–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungreis I, Chan CS, Waterhouse RM et al (2016) Evolutionary dynamics of abundant stop codon readthrough. Mol Biol Evol 33:3108–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Patankar JV, de Haan W et al (2015) Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1. Diabetes 64:1168–1179

    Article  CAS  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  CAS  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Murrell B, Fourment M et al (2011) A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 28:3033–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlov AM, Darriba D, Flouri T et al (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz305

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahti DC, Johnson NA, Ajie BC et al (2009) Relaxed selection in the wild. Trends Ecol Evol 24:487–496

    Article  PubMed  Google Scholar 

  • Lassmann T, Sonnhammer ELL (2005) Automatic assessment of alignment quality. Nucleic Acids Res 33:7120–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YCG, Reinhardt JA (2012) Widespread polymorphism in the positions of stop codons in Drosophila melanogaster. Genome Biol Evol 4:533–549

    Article  CAS  PubMed  Google Scholar 

  • Loughran G, Chou M-Y, Ivanov IP et al (2014) Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 42:8928–8938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur DG, Tyler-Smith C (2010) Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet 19:R125–R130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur DG, Balasubramanian S, Frankish A et al (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:823–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith RW, Zhang G, Gilbert MTP et al (2014) Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346:1254390

    Article  CAS  PubMed  Google Scholar 

  • Mugal CF, Wolf JBW, Kaj I (2014) Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol Biol Evol 31:212–231

    Article  CAS  PubMed  Google Scholar 

  • Murrell B, Wertheim JO, Moola S et al (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell B, Moola S, Mabona A et al (2013) FUBAR: a fast, unconstrained bayesian AppRoximation for inferring selection. Mol Biol Evol 30:1196–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell B, Weaver S, Smith MD et al (2015) Gene-wide identification of episodic selection. Mol Biol Evol 32:1365–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagel KA, Pejaver V, Lin GN et al (2017) When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics 33:i389–i398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  CAS  PubMed  Google Scholar 

  • Potapova NA, Andrianova MA, Bazykin GA, Kondrashov AS (2018) Are nonsense alleles of Drosophila melanogaster genes under any selection? Genome Biol Evol 10:1012–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinker DC, Specian NK, Zhao S, Gibbons JG (2019) Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proc Natl Acad Sci USA 116:13446–13451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saarinen J, Lister AM (2016) Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J Quat Sci 31:799–808

    Article  Google Scholar 

  • Sela I, Ashkenazy H, Katoh K, Pupko T (2015) GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43:W7–W14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Hiller M (2018) Loss of enzymes in the bile acid synthesis pathway explains differences in bile composition among mammals. Genome Biol Evol 10:3211–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Elghafari A, Hiller M (2016) Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation. Nucleic Acids Res 44:e103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Schwede P, Hiller M (2017) CESAR 2.0 substantially improves speed and accuracy of comparative gene annotation. Bioinformatics 33:3985–3987

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Hecker N, Roscito JG et al (2018) A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat Commun 9:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman RM, Forman J, Antonescu V et al (2019) Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat Genet 51:30–35

    Article  CAS  PubMed  Google Scholar 

  • Smith MD, Wertheim JO, Weaver S et al (2015) Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulem P, Helgason H, Oddson A et al (2015) Identification of a large set of rare complete human knockouts. Nat Genet 47:448–452

    Article  CAS  PubMed  Google Scholar 

  • Tonin F, Arends IWCE (2018) Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein J Org Chem 14:470–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay N, Park C, Oh J et al (2018) Population genomic analysis reveals contrasting demographic changes of two closely related dolphin species in the last glacial. Mol Biol Evol 35:2026–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagh K, Bhatia A, Alexe G et al (2012) Lactase persistence and lipid pathway selection in the Maasai. PLoS ONE 7:e44751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Xu S, Du K et al (2016) Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans. Mol Biol Evol 33:3144–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren WC, Hillier LW, Tomlinson C et al (2017) A new chicken genome assembly provides insight into avian genome structure. G3(7):109–117

    Google Scholar 

  • Wertheim JO, Murrell B, Smith MD et al (2015) RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32:820–832

    Article  CAS  PubMed  Google Scholar 

  • **a X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **a X, **e Z, Salemi M et al (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NV would like to acknowledge funding from IISER Bhopal under Grant # INST/BIO/2017/019. We thank Council of Scientific & Industrial Research for fellowship to SSS, Ministry of Human Resource Development for fellowships to LT and SS. NV has been awarded the Innovative Young Biotechnologist Award 2018 from the Department of Biotechnology and Early Career Research Award from the Department of Science and Technology (both Government of India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarjun Vijay.

Additional information

Handling Editor: William Murphy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3186 kb)

Supplementary material 2 (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, S.S., Teekas, L., Sharma, S. et al. Signatures of Relaxed Selection in the CYP8B1 Gene of Birds and Mammals. J Mol Evol 87, 209–220 (2019). https://doi.org/10.1007/s00239-019-09903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-019-09903-6

Keywords

Navigation