Log in

Moisture sorption isotherms and thermodynamic properties of Oak wood (Quercus robur and Quercus canariensis): optimization of the processing parameters

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The aim of this paper was to determine the moisture desorption isotherms and essentials thermodynamic properties of two Oak wood varieties. Desorption isotherms were measured using a static gravimetric method at 50, 60, 70 and 80 °C within the range of 5–90 % relative humidity. The equilibrium moisture content decreased with increasing temperature and decreased with decreasing relative humidity at a constant temperature. The ‘Thermodynamic’ sorption equation was found to be the best for describing the experimental moisture sorption isotherms of woods within the range of temperature and water activity investigated. The Fiber saturation point, deduced from the ‘Thermodynamic’ model parameters, depends on the temperature and varying from 22.6 to 54.4 (% kg water/kg dry matter). Isosteric heat of desorption and differential entropy were calculated by applying Clausius–Clapeyron equation to the desorption data fitted by the ‘Thermodynamic’ model. The isosteric heat of desorption and the differential entropy decreased with increasing moisture content according to an exponential law equation and varying from 2.03 to 31.14 kJ/mol and from 73.98 to 4.34 J/(mol K), respectively. The linear relationship between differential enthalpy and entropy satisfied the enthalpy–entropy compensation theory. The sign of Gibbs free energy was found to be positive (+283 J/mol) and (+97 J/mol) for Quercus robur and Quercus canariensis, respectively. The isokinetic temperature was found to be greater than the harmonic temperature. Based on the enthalpy–entropy compensation theory, it could be concluded that the moisture desorption isotherm of Oak wood is a non-spontaneous and enthalpy-controlled process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A, B and C:

Model parameters

aw :

Water activitiy (–)

Cg :

Constant related to the heat of sorption

cst:

Constant

DM:

Dry matter

K:

Constant related to multilayer properties

Lv :

Latent heat of vaporization (J/mol)

Md :

Dry mass (kg)

Meq :

Equilibrium mass (kg)

n:

Total number of isotherms

q0 :

Isosteric heat of sorption of the monolayer (kJ/mol)

qst :

Total isosteric heat of desorption (J/mol)

Qst,n :

Desorption isosteric heat (J/mol)

R:

Perfect gas constant [8.315 J/(mol K)]

RH:

Relative humidity (%)

T:

Temperature (°C)

Thm :

Harmonic mean temperature (K)

Tβ :

Isokinetic temperature (K)

X0 :

Water content of the monolayer [kg water/(kg DM)]

Xeq cal,i :

Equilibrium moisture content calculated

Xeq :

Equilibrium moisture contents [kg water/(kg DM)]

Xeqi :

Experimental value of equilibrium moisture content

Xfsp :

Fiber saturation point [% kg water/(kg DM)]

nexpdata :

Experimental point

nparam :

Parameter number of the particular model

\(\overline{{{\text{X}}_{\text{eq}} }}\) :

Arithmetic average value of the experimental equilibrium moisture content

\(X_{{eq_{m} }}\) :

Monolayer moisture content [kg/(kg DM)]

ΔS:

Desorption entropy (J/mol K)

Φ :

Thermodynamic parameter

References

  1. Ding WD, Koubaa A, Chaala A (2013) Mechanical properties of MMA-hardened poplar wood. Ind Crops Prod 46:304–310

    Article  Google Scholar 

  2. Popescu C-M, Hill CAS, Curling S, Ormondroyd G, **e Y (2013) The water vapour sorption behavior of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J Mater Sci 49:2362–2371

    Article  Google Scholar 

  3. Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47:141–161

    Article  Google Scholar 

  4. Ouertani S, Azzouz S, Hassini L, Belghith A (2011) Palm wood drying and optimization of the processing parameters. Wood Mater Sci Eng J 6:75–90

    Article  Google Scholar 

  5. Remond R, Passard J, Perre P (2007) The effect of temperature and moisture content on the mechanical behavior of wood: a comprehensive model applied to drying and bending. Eur J Mech A Solids 26:558–572

    Article  MATH  Google Scholar 

  6. Payette M, Timothy TW, Drouin P, Koubaa A (2015) Efficacy of microwave irradiation for phytosanitation of wood packing materials. Ind Crops Prod 69:187–196

    Article  Google Scholar 

  7. Aléon D (2004) Traitement phytosanitaire du bois par chauffage à cœur. Bull OEPP/EPPO Bull 34:133–138

    Article  Google Scholar 

  8. Simpson WT (1999) Drying and control of moisture content and dimensional changes. Wood handbook-wood as an engineering material, Forest Products Laboratory, General Technical Report FPL-GTR 113, USDA, Madison

  9. Perré P, Keey BR (2006) Drying of wood: principles and practices. In: Mujumdar AS (ed) Handbook of industrial drying, 3rd edn. Taylor & Francis, London, pp 822–872

    Google Scholar 

  10. Jannot Y, Kanmogne A, Talla A, Monkam L (2006) Experimental determination and modelling of water desorption isotherms of tropical woods: afzelia, ebony, iroko, moabi and obeche. Holz Roh Werkst 64:121–124

    Article  Google Scholar 

  11. Ouertani S, Azzouz S, Hassini L, Koubaa A, Belghith A (2014) Moisture sorption isotherms and thermodynamic properties of Jack pine and Palm wood: comparative study. Ind Crops Prod 56:200–210

    Article  Google Scholar 

  12. Fernandez GF, Esteban LG, Palacios P et al (2014) Sorption and thermodynamic properties of Terminalia superba Engl. & Diels and Triplochiton scleroxylon K. Schum. Through the 15, 35 and 50 °C sorption isotherms. Eur J Wood Prod 72:99–106

    Article  Google Scholar 

  13. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) Water sorption isotherms of starch powders: part 1: mathematical description of experimental data. J Food Eng 61:297–307

    Article  Google Scholar 

  14. King CJ (1968) Rates of moisture sorption and desorption in porous dried food stuffs. Food Technol 22:165–171

    Google Scholar 

  15. Young JH (1976) Evaluation of models to describe sorption and desorption equi-librium moisture content isotherms of Virginia type peanuts. Trans ASABE 19:146–150

    Article  Google Scholar 

  16. Labuza TP (1968) Sorption phenomena in foods. Food Technol 22:263–268

    Google Scholar 

  17. Themelin A (1998) Comportement en sorption de produits ligno-cellulosiques. Bois For Trop 2:55–67

    Google Scholar 

  18. Lartigue C (1987) Mécanisme élémentaire mis en jeu lors du séchage du pin maritime. PhD thesis, Université de Bordeaux I

  19. Koumoutsakos A, Avramidis S (1999) Enthalpy–entropy compensation in water sorption by various wood species. Holz Roh Werkst 57:379–382

    Article  Google Scholar 

  20. Nkolo Meze’e YN, Ngamveng JN, Bardet S (2008) Effect of enthalpy–entropy compensation during sorption of water vapour in tropical woods: the case of Bubinga (Guibourtia Tessmanii J. Leonard; G. Pellegriniana J.L.). Thermochim Acta 468:1–5

    Article  Google Scholar 

  21. Tsami E (1991) Net isosteric heat of sorption in dried fruits. J Food Eng 14:327–335

    Article  Google Scholar 

  22. Bahloul N, Boudhrioua N, Kechaou N (2000) Moisture desorption–adsorption isotherms and isosteric heats of sorption of Tunisian olive leaves (Olea europaea L.). Ind Crops Prod 28:162–176

    Article  Google Scholar 

  23. Belghith A, Azzouz S, ElCafsi A (2015) Desorption isotherms and mathematical modelling of thin layer drying kinetics of tomato. Heat Mass Transf 52:407–419

    Article  Google Scholar 

  24. Rawat SPS, Khall DP (1996) Enthalpy–entropy compensation during sorption of water in wood. J Appl Sci 60:787–790

    Article  Google Scholar 

  25. Iglesias HA, Chirife J (1976) Isosteric heats of water vapour sorption on dehydrated foods. Part II: hysteresis and heat of sorption comparison with BET theory. Lebensm Wiss Technol 9:123–127

    Google Scholar 

  26. Mrekeb S, Dubois F, Petit Ch (2009) Modeling of the sorption hysteresis for wood. Wood Sci Technol 43:575–589

    Article  Google Scholar 

  27. Navi P, Heger F (2005) Comportement thermo-hydromécanique du bois: application technologiques et dans les structures, 1st edn. Presses polytechniques et universitaires romandes, Suisse

    Google Scholar 

  28. Kouhila M, Kechaou N, Otmani M, Fliyou M, Lahsasni S (2002) Experimental study of sorption isotherms and drying kinetics of Moroccan Eucalyptus globules. Dry Technol 20:2027–2039

    Article  Google Scholar 

  29. Gabas AL, Menegalli FC, Telis-Romero J (2000) Water sorption enthalpy–entropy compensation based on isotherms of plum skin and pulp. J Food Sci 65:680–684

    Article  Google Scholar 

  30. Oliveira EG, Rosa GS, Moraes MA, Pinto LAA (2009) Moisture sorption characteristics of microalgae sprulina platensis. Braz J Chem Eng 26:1297–1303

    Google Scholar 

  31. Goneli ALD, Correa PC, Oliveira GHH, Botelho FM (2010) Water sorption isotherms and thermodynamic properties of okra seeds. Trans ASABE Am Soc Agric Biol Eng 53:191–197

    Google Scholar 

  32. Avramidis S (1992) Enthalpy–entropy compensation and thermodynamic considerations in sorption phenomena. Wood Sci Technol 26:329–333

    Article  Google Scholar 

  33. Leffler JE (1955) the enthalpy–entropy relationship and its implications for organic chemistry. J Org Chem 20:1202–1231

    Article  Google Scholar 

  34. Aguerre RJ, Suarez C, Viollaz PE (1986) Enthalpy–entropy compensation in sorption phenomena: application to the prediction of the effect of temperature on food isotherms. J Food Sci 51:1547–1549

    Article  Google Scholar 

  35. Ponton S, Dupouey JL, Bréda N, Feuillat F, Bodénès C, Dreyer E (2001) Carbon isotope discrimination and wood anatomy variations in mixed stands of Quercus robur and Quercus petraea. Plant Cell Environ 24:861–868

    Article  Google Scholar 

  36. Mannai Y, Ezzine O, Nouira S, Ben Jamâa ML (2015) First report of the winter moth Operophtera brumata on Quercus canariensis and Q. afares in North West of Tunisia. Tunis J Plant Protect 10:69–73

    Google Scholar 

  37. Labuza TP, Kaanane A, Chen JY (1985) Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. J Food Sci 50:385–392

    Article  Google Scholar 

  38. Boudhrioua N, Bahloul N, Kouhila M, Kechaou N (2008) Sorptions isotherms and isosteric heats of sorption of olive leaves (Chemlali variety): experimental and mathematical investigations. Food Bioprod Process 86:67–175

    Google Scholar 

  39. Greenspan L (1977) Humidity fixed point of binary saturated aqueous solutions. J Res Nat Bur Stand A Phys Chem 81:89–96

    Article  Google Scholar 

  40. Arabhosseini A, Huisman W, Müller J (2011) Modeling of desorption of Alfalfa (Medicago sativa) stems and leaves. Ind Crops Prod 34:1550–1555

    Article  Google Scholar 

  41. Vishwakarma RK, Shivhare US, Nanda SK (2011) Moisture adsorption isotherm s of guar (Cyamposis tetragonoloba) grain and guar gum splits. LWT Food Sci Technol 44:969–975

    Article  Google Scholar 

  42. Hassini L, Bettaieb E, Desmorieux H, Sandoval Torres S, Touil A (2015) Desorption isotherms and thermodynamic properties of prickly pear seeds. Ind Crops Prod 67:457–465

    Article  Google Scholar 

  43. Ouertani S, Koubaa A, Azzouz S, Hassini L, Ben Dhib K, Belghith A (2015) Vacuum contact drying kinetics of Jack pine wood and its influence on mechanical properties: industrial applications. Heat Mass Transf 51:1029–1039

    Article  Google Scholar 

  44. American Society for Testing and Materials (1984) Standard test methods for moisture content of wood. ASTM D2016. ASTM, Philadelphia

  45. Hadrich B, Boudhrioua N, Kechaou N (2008) Experimental and mathematical study of desorption isotherms of Tunisian sardine (Sardinella aurita). Food Bioprod Process 86:242–247

    Article  Google Scholar 

  46. Iglesias HA, Chirife J, Ferro Fontan C (1989) On the temperature dependence of isosteric heats of water sorption in dehydrated foods. J Food Sci 54:1620–1631

    Article  Google Scholar 

  47. Madamba PS, Driscoll RH, Buckle KA (1996) Enthalpy–entropy compensation models for sorption and browning of garlic. J Food Eng 28:109–119

    Article  Google Scholar 

  48. Polatoglu B, Vildan Bes A, Kaya M, Aktas N (2011) Moisture adsorption isotherms and thermodynamics properties of sucuk (Turkish dry-fermented sausage). Food Bioprod Process 89:449–456

    Article  Google Scholar 

  49. Ha Villa-Velez, Ha Vaquiro, Bon J, Telis-Romero J (2012) Modelling thermodynamic properties of banana waste by analytical derivation of desorption isotherms. Int J Food Eng 8:1–19

    Google Scholar 

  50. McMinn WA, Al-Muhtaseb AH, Magee TRA (2005) Enthalpy–entropy compensation in sorption phenomena of starch materials. Food Res Int 38:505–510

    Article  Google Scholar 

  51. Sharp K (2000) Entropy–enthalpy compensation: fact or artifact. Protein Sci 10:661–667

    Article  Google Scholar 

  52. Wim W (2014) Hydrostatic pressure and temperature dependence of wood moisture sorption isotherms. Wood Sci Technol 48:483–498

    Article  Google Scholar 

  53. Leffer JE, Grunwald E (1936) Rates and equilibria of organic reactions. Wiley, NewYork

    Google Scholar 

  54. Krug RR, Hunter WG, Greiger RA (1976) Enthalpy–entropy compensation. 1. Some fundamental statistical problems associated with the van’t Hoff and Arrhenius data. J Phys Chem 80:2335–2342

    Article  Google Scholar 

  55. McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60:157–165

    Article  Google Scholar 

  56. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  57. Eligon AM, Achong A, Saunder R (1992) Moisture adsorption and desorption properties of some tropical woods. J Mater Sci 27:3442–3456

    Article  Google Scholar 

  58. Ishimaru Y, Masato KA, Oshima MK, Iida I (2001) Physical and mechanical properties of wood after moisture conditioning. J Wood Sci 47:185–191

    Article  Google Scholar 

  59. Buckton G (1995) Application of isothermal microcalorimetry in the pharmaceutical science. Thermochim Acta 248:117–129

    Article  Google Scholar 

  60. Moreira R, Chenlo F, Torres MD, Prieto DM (2010) Water adsorption and desorption isotherms of chestnut and wheat flours. Ind Crops Prod 32:252–257

    Article  Google Scholar 

  61. Mazza G, Le Maguer M (1978) Water sorption properties of yellow globe onion (Allium cepa L.). Can Inst Food Sci Technol J 11:189–193

    Article  Google Scholar 

  62. Palipane KB, Driscoll RH (1994) The thin layer drying characteristics of macadamia in-shell nuts and kernels. J Food Eng 23:129–144

    Article  Google Scholar 

  63. Bakour R (2003) Influence de l’espèce et de la provenance de deux principaux chênes français (Quercus robur L.; Quercus petraea Liebl.) sur la structure anatomique et les propriétés physiques du bois de merrain. PhD thesis, ENGREF, Paris

  64. Badel E, Bakour R, Perré P (2006) Investigation of the relationships between anatomical pattern, density and local swelling of oak wood. IAWA J 27:55–71

    Article  Google Scholar 

  65. Siau JF (1984) Transport processes in wood. In: Timell TE (ed). Springer, Berlin, Heidelberg, New York

  66. Vavrčík H, Gryc V, Koňas P (2010) Comparison of wood density in relation to growth rings of English oak and Sessile oak. In Levanic T, Gricar J, Hafner P, Krajnc R, Jagodic S, Gärtner H, Heinrich I, Helle G (eds) TRACE-Tree Rings in Archaeology, Climatology and Ecology, vol 8: proceedings of the DENDROSYMPOSIUM 2009, April 16th–19th 2009, Otočec, Slovenia. GFZ Potsdam, Scientific Technical Report STR 10/05, Potsdam, pp 157–163

  67. Simpson LA, Barton AFM (1991) Determination of the fibre saturation point in whole wood using differential scanning calorimetry. Wood Sci Technol 25:301–308

    Article  Google Scholar 

  68. Machhour H, Mahrouz AI, El Hadrami M, Kouhila M (2012) Sorption isotherms and thermodynamic properties of peppermint tea (Mentha piperita) after thermal and biochemical treatment. J Mater Environ Sci 3:232–247

    Google Scholar 

  69. Quirijns E, Van Boxtel A, Van Loon W, Van Straten G (2005) Sorption isotherms, GAB parameters and isosteric heat of sorption. J Sci Food Agric 85:1805–1814

    Article  Google Scholar 

  70. Talla A (2012) Experimental determination and modeling of the sorption isotherms of kilishi. Brit J Appl Sci Technol 2:379–389

    Article  Google Scholar 

  71. Skaar C (1988) Wood-water relations. In: Timell TE (ed). Springer, Berlin, Heidelberg, New York

  72. Eim VS, Rossello C, Femenia A, Simal S (2011) Moisture sorption isotherms and thermodynamic properties of carrot. Int J Food Ing. doi:10.2202/1556-3758.1804

    Google Scholar 

  73. Noshad M, Shahidi F, Mohebbi M, Mortazavi S (2012) Desorption isotherms and thermodynamic properties of fresh and osmotic–ultrasonic dehydrated quince. J Food Process Preserv 37:1–12

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Mr. Abderrazak Zaaraoui, technician at Laboratoire d’Énergétique et des Transferts Thermique et Massique ‘LETTM’, department of Physics of University of Tunis El Manar for his help in carrying out the experiments. The first author acknowledges the researchers of Laboratoire de Gestion et de Valorisation des Ressources Forestières of Institut Nationale de Recherches en Génie Rural and Mr. Tristan Stein technician at Laboratoire d’Étude et de Recherche sur le Matériau Bois (LERMAB) for their support and helpfulness during wood samples proxy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Bahar.

Appendix

Appendix

$$\begin{aligned} {\text{s }} & = \sqrt {\frac{{\sum\nolimits_{{{\text{i}} = 1}}^{\text{nexpdata}} {({\text{X}}_{{{\text{eq}}_{\text{i}} }} - {\text{X}}_{{{\text{eq}}_{\text{cal,i}} }} )^{2} } }}{{{\text{n}}_{{{ \exp } . {\text{data}}}} - {\text{n}}_{\text{param}} }}} \\ {\text{r }} & = \sqrt {1 - \frac{{\sum\nolimits_{i = 1}^{{{\text{n}}_{\text{expdata}} }} {({\text{X}}_{{{\text{eq}}_{\text{i}} }} - {\text{X}}_{{{\text{eq}}_{\text{cal,i}} }} )^{2} } }}{{\sum\nolimits_{{{\text{i}} = 1}}^{{{\text{n}}_{\text{expdata}} }} {(\overline{{X_{\text{eq}} }} - {\text{X}}_{{{\text{eq}}_{\text{i}} }} )^{2} } }}} \\ \overline{{{\text{X}}_{\text{eq}} }} & = \frac{1}{{{\text{n}}_{{{ \exp } . {\text{data}}}} }}\sum\limits_{{{\text{i}} = 1}}^{{{\text{n}}_{\text{expdata}} }} {{\text{X}}_{{{\text{eq}}_{\text{i}} }} } \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahar, R., Azzouz, S., Remond, R. et al. Moisture sorption isotherms and thermodynamic properties of Oak wood (Quercus robur and Quercus canariensis): optimization of the processing parameters. Heat Mass Transfer 53, 1541–1552 (2017). https://doi.org/10.1007/s00231-016-1916-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1916-0

Keywords

Navigation