Log in

Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

An important traditional load bearing member in oriental ancient timber structure buildings, i.e. Huagong (flower arm), was selected to explore the alterations in cell wall components and hygroscopic properties of wood during long time ageing. This archaeological poplar (Populus spp.) wood with cal. BP 690: BP 790 was studied from the wood surface and inwards by means of imaging FTIR spectroscopy, X-ray diffraction and dynamic vapour sorption. The deterioration of the archaeological wood mainly displayed a depolymerization of glucomannan and lignin as well as a hydrolysis of the glucuronic acid of xylan and of the aromatic C–O groups in the condensed lignins or lignin–carbohydrate complexes. Furthermore, the degradation promoted the rearrangement of the cellulose molecules in adjacent microfibrils. The cellulose crystallites in the archaeological wood were therefore packed more tightly and had larger diameter. The structural alterations of wood cell wall components and a decrease in crystallinity contributed to an increase in the number of moisture bonding sites and led to an increase in both the equilibrium moisture content of the archaeological wood in the entire RH range as well as an increase in hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bjurhager I, Halonen H, Lindfors E, Iversen T, Almkvist G, Gamstedt EK, Berglund LA (2012) State of degradation in archaeological oak from the 17th century vasa ship: substantial strength loss correlates with reduction in (holo)cellulose molecular weight. Biomacromolecules 13:2521–2527

    Article  CAS  PubMed  Google Scholar 

  • Blanchette RAA (2000) Review of microbial deterioration found in archaeological wood from different environments. Int Biodeterior Biodergrad 46:189–204

    Article  Google Scholar 

  • Borgin K, Parameswaran N, Liese W (1975) The effect of aging on the ultrastructure of wood. Wood Sci Technol 9:87–98

    Article  Google Scholar 

  • Chang SS, Salmén L, Olsson AM, Clair B (2014) Deposition and organization of cell wall polymers during maturation of poplar tension wood by FTIR microspectroscopy. Planta 239:243–254

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Wangaard FF (1968) Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Sci Technol 2:177–187

    Google Scholar 

  • Cheng J (1985) Wood science. China Forestry Publishing House, Bei**g, pp 1316–1321

    Google Scholar 

  • Colom X, Carrillo F, Nogués F, Garriga P (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stabil 80:543–549

    Article  CAS  Google Scholar 

  • Dong M, Zhou H, Jiang X, Lu Y, Wang W, Yin Y (2017) Wood used in ancient timber architectures in the Shanxi province of china. IAWA J 38(2):182–200

    Article  Google Scholar 

  • Esteban LG, de Palacios P, Garciá-Fernández F (2008) Sorption and thermodynamic properties of old and new Pinus Sylvestris wood. Wood Fiber Sci 40(1):111–121

    CAS  Google Scholar 

  • Esteban LG, de Palacios P, Garciá-Fernández F, Martín JA, Génova M, Fernandez-Golfín JL (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1170 ± 40 BP. Wood Sci Technol 43(7–8):679–690

    Article  CAS  Google Scholar 

  • Esteban LG, de Palacios P, Garciá-Fernández F, Garía-Amorena I (2010) Effects of burial of quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodergrad 64:371–377

    Article  CAS  Google Scholar 

  • Fackler K, Schwanninger M (2012) How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay. Appl Microbiol Biotechnol 96:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fackler K, Stevanic JS, Ters T, Hinterstoisser B, Schwanninger M, Salmén L (2010) Localisation and characterization of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme Microb Technol 47:257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fackler K, Stevanic JS, Ters T, Hinterstoisser B, Schwanninger M, Salmén L (2011) FT-IR imaging microscopy to localize and characterize simultaneous and selective white-rot decay within spruce wood cells. Holzforschung 65:411–420

    Article  CAS  Google Scholar 

  • Fengel D (1991) Aging and fossilization of wood and its components. Wood Sci Technol 25:153–177

    CAS  Google Scholar 

  • Genestar C, Pons C (2008) Analytical characterization of biodegraded wood from a 15th century Spanish cloister. Microchim Acta 162:333–339

    Article  CAS  Google Scholar 

  • Gilani MS, Schwarze FWMR (2015) Hygric properties of Norway Spruce and Sycamore after incubation with two white rot fungi. Holzforschung 69(1):77–86

    Article  CAS  Google Scholar 

  • Guo J, Song K, Salmén L, Yin Y (2015) Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydr Polym 115:207–214

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Rennhofer H, Yin Y, Lichtenegger H (2016) The influence of thermo-hygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering. Cellulose 23:2325–2340

    Article  CAS  Google Scholar 

  • Howell C, Hastrup ACS, Jara R, Larsen FH, Goodell B, Jellison J (2011) Effects of hot water extraction and fungal decay on wood crystalline cellulose structure. Cellulose 18:1179–1190

    Article  CAS  Google Scholar 

  • Hwang S, Horikawa Y, Lee W, Sugiyama J (2016) Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. J Wood Sci 62(2):156–167

    Article  CAS  Google Scholar 

  • Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11:2300–2305

    Article  CAS  PubMed  Google Scholar 

  • Jensen P, Gregory DJ (2006) Selected physical parameters to characterize the state of preservation of waterlogged archaeological wood: a practical guide for their determination. J Archaeol Sci 33:551–559

    Article  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  Google Scholar 

  • Lindh EL, Bergenstråhle-Wohlert M, Terenzi C, Salmén L, Furó I (2016) Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohydr Res 434:136–142

    Article  CAS  PubMed  Google Scholar 

  • Lionetto F, Sole RD, Cannoletta D, Vasapollo G, Maffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5:1910–1922

    Article  CAS  PubMed Central  Google Scholar 

  • Mazzolani FM, Faggiano B, Marzo A (2005) Methodology for the analysis of complex historical wooden structures: a study case. Taylor and Francis Group, London

    Google Scholar 

  • Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442

    Article  CAS  PubMed  Google Scholar 

  • Naumann A, Navarro-González M, Peddireddi S, Kües U, Polle A (2005) Fourier transform infrared microscopy and imaging: detection of fungi in wood. Fungal Genet Biol 42:829–835

    Article  PubMed  Google Scholar 

  • Navi P, Sandberg D (2011) Thermo-hydro-mechanical processing of wood. EPEL Press, Lausanne

    Google Scholar 

  • Pedersen NB, Gierlinger N, Thygesen LG (2015) Bacterial and abiotic decay in waterlogged archaeological picea abies (l.) karst studied by Confocal Raman imaging and ATR-FTIR spectroscopy. Holzforschung 69(1):103–112

    Article  CAS  Google Scholar 

  • Pizzo B, Pecoraro E, Alves A, Macchioni N, Rodrigues JC (2015) Quantitative evaluation by attenuated total reflection infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta 131:14–20

    Article  CAS  PubMed  Google Scholar 

  • Popescu C, Hill CAS (2013) The water vapour adsorption-desorption behavior of naturally aged Tiliacordata Mill. wood. Polym Degrad Stabil 98:1804–1813

    Article  CAS  Google Scholar 

  • Popescu C, Larsson PT, Tibirna CM, Vasile C (2010) Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-Nuclear magnetic resonance spectroscopy. Appl Spectrosc 64(9):1054–1060

    Article  CAS  PubMed  Google Scholar 

  • Prieto-Taboada N, Larraňaga A, Gómez-Laserna O, Martínez-Arkarazo I (2015) The relevance of the combination of XRD and Raman spectroscopy for the characterization of the CaSO4–H2O system compounds. Microchem J 122:102–109

    Article  CAS  Google Scholar 

  • Qu Z, Liang L (2015) Analysis of meteorologic elements variations in **zhong area in recent 40 years. Mod Agric Sci Technol 22:251

    Google Scholar 

  • Salmén L (2015) Wood morphology and properties from molecular perspectives. Ann For Sci 72:679–684

    Article  Google Scholar 

  • Salmén L, Stevanic JS, Olsson A-M (2016) Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA). Holzforschung. doi:10.1515/hf-2016-0050

    Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Simonović J, Stevanic J, Djikanović D, Salmén L, Radotić K (2011) Anisotropy of cell wall polymers in branches of hardwood and softwood: a polarized FTIR study. Cellulose 18:1433–1440

    Article  Google Scholar 

  • Song K, Yin Y, Salmén L, **ao F, Jiang X (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49(4):1734–1742

    Article  CAS  Google Scholar 

  • Srebotnik E, Messner K (1991) Immunoelectron microscopical study of the porosity of brown-rot degraded pine wood. Holzforschung 45(2):95–101

    Article  Google Scholar 

  • Stevanic JS (2011) Interactions between wood polymers in wood cell walls and cellulose/hemicellulose biocomposites. PhD. Thesis, Chalmers University of Technology, Sweden

  • Traoré M, Kaal J, Cortizas AM (2016) Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim Acta A 153:63–70

    Article  Google Scholar 

  • Wazny J (1993) The present classification of wood degradation factors. Folia Fore Pol 3(24):13–22

    Google Scholar 

  • Winandy JE, Morrell JJ (1993) Relationship between incipient decay, strength, and chemical composition of douglas-fir heartwood. Wood Fiber Sci 25:278–288

    CAS  Google Scholar 

  • **e Y, Hill C, Jalaludin Z, Sun D (2011) The water vapour sorption behavior of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin–Voigt viscoelastic model. Cellulose 18:517–530

    Article  CAS  Google Scholar 

  • Yin Y, Berglund L, Salmén L (2011) Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 12(1):194–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Chinese National Natural Science Foundation (No. 31600450) and the State Administration of Foreign Experts Affairs P. R. China (P163036008). Professor Junji Sugiyama from University of Tokyo, Japan, is acknowledged for the discussion of XRD results, and Mrs. Anne-Mari Olsson from Research Institutes of Sweden, Sweden, is acknowledged for technical support of the dynamic vapour sorption measurement. The Wood Collection of Chinese Academy of Forestry and the Wallenberg Wood Science Center of KTH are acknowledged for the support of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Salmén.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhou, H., Stevanic, J.S. et al. Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction. Wood Sci Technol 52, 131–147 (2018). https://doi.org/10.1007/s00226-017-0956-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0956-z

Navigation