Log in

Small-Angle X-ray Scattering Demonstrates Similar Nanostructure in Cortical Bone from Young Adult Animals of Different Species

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Despite the vast amount of studies focusing on bone nanostructure that have been performed for several decades, doubts regarding the detailed structure of the constituting hydroxyapatite crystal still exist. Different experimental techniques report somewhat different sizes and locations, possibly due to different requirements for the sample preparation. In this study, small- and wide-angle X-ray scattering is used to investigate the nanostructure of femur samples from young adult ovine, bovine, porcine, and murine cortical bone, including three different orthogonal directions relative to the long axis of the bone. The radially averaged scattering from all samples reveals a remarkable similarity in the entire q range, which indicates that the nanostructure is essentially the same in all species. Small differences in the data from different directions confirm that the crystals are elongated in the [001] direction and that this direction is parallel to the long axis of the bone. A model consisting of thin plates is successfully employed to describe the scattering and extract the plate thicknesses, which are found to be in the range of 20–40 Å for most samples but 40–60 Å for the cow samples. It is demonstrated that the mineral plates have a large degree of polydispersity in plate thickness. Additionally, and equally importantly, the scattering data and the model are critically evaluated in terms of model uncertainties and overall information content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10(9):3815–3826. doi:10.1016/j.actbio.2014.05.024

    Article  PubMed  Google Scholar 

  2. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123. doi:10.1039/b402005g

    Article  CAS  Google Scholar 

  3. Stock SR (2015) The mineral-collagen interface in bone. Calcif Tissue Int. doi:10.1007/s00223-015-9984-6

    PubMed  Google Scholar 

  4. Hodge AJ, Petruska JA (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule. In: Ramachandran GN (ed) Aspects of protein structure. Academic press, London and New York, pp 289–300

    Google Scholar 

  5. Landis WJ, Jacquet R (2013) Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int 93(4):329–337. doi:10.1007/s00223-013-9725-7

    Article  CAS  PubMed  Google Scholar 

  6. Weiner S, Arad T, Traub W (1991) Crystal organization in rat bone lamellae. FEBS Lett 285(1):49–54. doi:10.1016/0014-5793(91)80722-F

    Article  CAS  PubMed  Google Scholar 

  7. Landis WJ, Hodgens KJ, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117(1):24–35. doi:10.1006/jsbi.1996.0066

    Article  CAS  PubMed  Google Scholar 

  8. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng 58(3–5):77–116. doi:10.1016/j.mser.2007.05.001

    Article  Google Scholar 

  9. Chen PY, Toroian D, Price PA, McKittrick J (2011) Minerals form a continuum phase in mature cancellous bone. Calcif Tissue Int 88(5):351–361. doi:10.1007/s00223-011-9462-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39(6):365–375. doi:10.1007/Bf02555173

    Article  CAS  PubMed  Google Scholar 

  11. McNally E, Nan F, Botton GA, Schwarcz HP (2013) Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging. Micron 49:46–53. doi:10.1016/j.micron.2013.03.002

    Article  PubMed  Google Scholar 

  12. McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS One. doi:10.1371/journal.pone.0029258

    Google Scholar 

  13. Schwarcz HP, McNally EA, Botton GA (2014) Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. J Struct Biol 188(3):240–248. doi:10.1016/j.jsb.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  14. Fujisawa R, Kuboki Y (1991) Preferential adsorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochim Biophys Acta 1:56–60

    Article  Google Scholar 

  15. Wang ZQ, Xu ZJ, Zhao WL, Sahai N (2015) A potential mechanism for amino acid-controlled crystal growth of hydroxyapatite. J Mater Chem B 3(47):9157–9167. doi:10.1039/c5tb01036e

    Article  CAS  Google Scholar 

  16. Hu YY, Rawal A, Schmidt-Rohr K (2010) Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci USA 107(52):22425–22429. doi:10.1073/pnas.1009219107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Handschin RG, Stern WB (1995) X-ray diffraction studies on the lattice perfection of human bone apatite (Crista Iliaca). Bone. doi:10.1016/S8756-3282(95)80385-8

    Google Scholar 

  18. Handschin RG, Stern WB (1992) Crystallographic lattice refinement of human bone. Calcif Tissue Int 51(2):111–120. doi:10.1007/Bf00298498

    Article  CAS  PubMed  Google Scholar 

  19. Trebacz H, Pikus S (2003) A study of mineral phase in immobilized rat femur: structure refinements by Rietveld analysis. J Bone Miner Metab 21(2):80–85. doi:10.1007/s007740300013

    Article  CAS  PubMed  Google Scholar 

  20. Selvig KA (1970) Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif Tiss Res 6(3):227–238. doi:10.1007/Bf02196203

    Article  CAS  Google Scholar 

  21. Schmidt WI (1936) Über die Orientierung der Kristallite im Zahnschmel. Naturwissenschaften 24(23):361. doi:10.1007/BF01473678

    Article  CAS  Google Scholar 

  22. Tadano S, Giri B (2011) X-ray diffraction as a promising tool to characterize bone nanocomposites. Sci Technol Adv Mater. doi:10.1088/1468-6996/12/6/064708

    Google Scholar 

  23. Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84(3):2021–2029. doi:10.1016/S0006-3495(03)75010-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith CB, Smith DA (1978) Structural role of bone apatite in human femoral compacta. Acta Orthop Scand 49(5):440–444. doi:10.3109/17453677808993259

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Von Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille M-M, Babonneau F, Azaïs T, Nassif N (2013) Water-mediated structuring of bone apatite. Nat Mater 12(12):1144–1153. doi:10.1038/nmat3787

    Article  CAS  PubMed  Google Scholar 

  26. Jager C, Welzel T, Meyer-Zaika W, Epple M (2006) A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem 44(6):573–580. doi:10.1002/Mrc.1774

    Article  PubMed  Google Scholar 

  27. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2005) Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res 20(4):625–634. doi:10.1359/JBMR.041217

    Article  CAS  PubMed  Google Scholar 

  28. Weiner S, Traub W (1992) Bone-structure—from Angstroms to Microns. Faseb Journal 6(3):879–885

    CAS  PubMed  Google Scholar 

  29. Boskey A (2003) Bone mineral crystal size. Osteoporos Int 14:S16–S20. doi:10.1007/s00198-003-1468-2

    Article  Google Scholar 

  30. Fratzl P, Groschner M, Vogl G, Plenk H, Eschberger J, Fratzlzelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues—a comparative-study by saxs. J Bone Miner Res 7(3):329–334

    Article  CAS  PubMed  Google Scholar 

  31. Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 35(1–4):9–16

    Google Scholar 

  32. Fratzl P, Fratzlzelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray-scattering. Calcif Tissue Int 48(6):407–413. doi:10.1007/Bf02556454

    Article  CAS  PubMed  Google Scholar 

  33. Hiller JC, Wess TJ (2006) The use of small-angle X-ray scattering to study archaeological and experimentally altered bone. J Archaeol Sci 33(4):560–572. doi:10.1016/j.jas.2005.09.012

    Article  Google Scholar 

  34. Bunger MH, Oxlund H, Hansen TK, Sorensen S, Bibby BM, Thomsen JS, Langdahl BL, Besenbacher F, Pedersen JS, Birkedal H (2010) Strontium and bone nanostructure in normal and ovariectomized rats investigated by scanning small-angle X-ray scattering. Calcif Tissue Int 86(4):294–306. doi:10.1007/s00223-010-9341-8

    Article  PubMed  Google Scholar 

  35. Fratzl P, Gupta HS, Paris O, Valenta A, Roschger P, Klaushofer K (2005) Diffracting “stacks of cards”—some thoughts about small-angle scattering from bone. In: Kremer F, Richtering W (eds) Scattering methods and the properties of polymer materials, vol 130., Progress in colloid and polymer scienceSpringer, Berlin, pp 33–39

    Google Scholar 

  36. Acerbo AS, Kwaczala AT, Yang L, Judex S, Miller LM (2014) Alterations in collagen and mineral nanostructure observed in osteoporosis and pharmaceutical treatments using simultaneous small- and wide-angle X-ray scattering. Calcif Tissue Int 95(5):446–456. doi:10.1007/s00223-014-9913-0

    Article  CAS  PubMed  Google Scholar 

  37. Georgiadis M, Guizar-Sicairos M, Zwahlen A, Trussel AJ, Bunk O, Muller R, Schneider P (2015) 3D scanning SAXS: a novel method for the assessment of bone ultrastructure orientation. Bone 71:42–52. doi:10.1016/j.bone.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  38. Burger C, Zhou HW, Wang H, Sics I, Hsiao BS, Chu B, Graham L, Glimcher MJ (2008) Lateral packing of mineral crystals in bone collagen fibrils. Biophys J 95(4):1985–1992. doi:10.1529/biophysj.107.128355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindner P, Zemb T (2002) Neutrons, X-rays, and light: scattering methods applied to soft condensed matter, 1st edn., North-Holland delta series, Elsevier, Amsterdam, Boston

    Google Scholar 

  40. Shimada T, Doi M, Okano K (1988) Concentration fluctuation of stiff polymers. 1. Static structure factor. J Chem Phys 88(4):2815–2821. doi:10.1063/1.454016

    Article  CAS  Google Scholar 

  41. Teixeira J (1988) Small-angle scattering by fractal systems. J Appl Crystallogr 21:781–785. doi:10.1107/s0021889888000263

    Article  Google Scholar 

  42. Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1(1):1–5. doi:10.1116/1.2178386

    Article  CAS  PubMed  Google Scholar 

  43. Schweizer KS, Curro JG (1994) Prism theory of the structure, thermodynamics, and phase-transitions of polymer liquids and alloys. Adv Polym Sci 116:319–377. doi:10.1007/Bfb0080203

    Article  CAS  Google Scholar 

  44. Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Miner 74(7–8):870–876

    CAS  Google Scholar 

  45. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  46. Døvling Kaspersen J, Moestrup Jessen C, Stougaard Vad B, Skipper Sørensen E, Kleiner Andersen K, Glasius M, Pinto Oliveira CL, Otzen DE, Pedersen JS (2014) Low-Resolution structures of OmpA·DDM protein-detergent complexes. ChemBioChem 15(14):2113–2124. doi:10.1002/cbic.201402162

    Article  PubMed  Google Scholar 

  47. Pedersen JS (1999) Structural studies by small-angle scattering and specular reflectivity. Riso National Lab, Roskilde

    Google Scholar 

  48. Traub W, Arad T, Weiner S (1989) 3-Dimensional ordered distribution of crystals in Turkey tendon collagen-fibers. Proc Natl Acad Sci USA 86(24):9822–9826. doi:10.1073/pnas.86.24.9822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pedersen JS, Vysckocil P, Schonfeld B, Kostorz G (1997) Small-angle neutron scattering of precipitates in Ni-rich Ni-Ti alloys. II. Methods for analyzing anisotropic scattering data. J Appl Crystallogr 30:975–984

    Article  Google Scholar 

  50. Kotlarchyk M, Chen SH (1983) Analysis of small-angle neutron-scattering spectra from polydisperse interacting colloids. J Chem Phys 79(5):2461–2469

    Article  CAS  Google Scholar 

  51. Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10. doi:10.1016/j.bone.2004.02.024

    Article  PubMed  Google Scholar 

  52. Tong W, Glimcher MJ, Katz JL, Kuhn L, Eppell SJ (2003) Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 72(5):592–598. doi:10.1007/s00223-002-1077-7

    Article  CAS  PubMed  Google Scholar 

  53. Eppell SJ, Tong WD, Katz JL, Kuhn L, Glimcher MJ (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19(6):1027–1034. doi:10.1016/S0736-0266(01)00034-1

    Article  CAS  PubMed  Google Scholar 

  54. Turunen MJ, Lages S, Labrador A, Olsson U, Tagil M, Jurvelin JS, Isaksson H (2014) Evaluation of composition and mineral structure of callus tissue in rat femoral fracture. J Biomed Opt. doi:10.1117/1.Jbo.19.2.025003

    PubMed  Google Scholar 

Download references

Acknowledgments

Funding from the Swedish Foundation for Strategic Research and the European Commission (FRACQUAL-293434) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Isaksson.

Ethics declarations

Conflict of Interest

None of the authors have any conflict of interest.

Human and Animal Rights and Informed Consent

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaspersen, J.D., Turunen, M.J., Mathavan, N. et al. Small-Angle X-ray Scattering Demonstrates Similar Nanostructure in Cortical Bone from Young Adult Animals of Different Species. Calcif Tissue Int 99, 76–87 (2016). https://doi.org/10.1007/s00223-016-0120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0120-z

Keywords

Navigation