Log in

Natural Construction of Ten Borcherds-Kac-Moody Algebras Associated with Elements in \(M_{23}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Borcherds-Kac-Moody algebras generalise finite-dimensional, simple Lie algebras. Scheithauer showed that there are exactly ten Borcherds-Kac-Moody algebras whose denominator identities are completely reflective automorphic products of singular weight on lattices of square-free level. These belong to a larger class of Borcherds-Kac-Moody (super)algebras Borcherds obtained by twisting the denominator identity of the Fake Monster Lie algebra. Borcherds asked whether these Lie (super)algebras admit natural constructions. For the ten Lie algebras from the classification we give a positive answer to this question, i.e. we prove that they can be realised uniformly as the BRST cohomology of suitable vertex algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The term Monster Lie algebra was later recoined to denote the Borcherds-Kac-Moody algebra obtained as quantisation of \(V^\natural \otimes V_{I\!I_{1,1}}\) (with the Moonshine module \(V^\natural \) [30]), which was used by Borcherds in his proof of the Monstrous Moonshine conjecture [6].

  2. Here, \({\text {O}}(I\!I_{26,2})^+\) denotes the subgroup of \({\text {O}}(I\!I_{26,2})\) of elements preserving the (choice of continuously varying) orientation on the 2-dimensional positive-definite subspaces of \(I\!I_{26,2}\otimes _\mathbb {Z}\mathbb {R}\). See, for example, Section 13 in [8].

  3. Except for \(m=23\) this is also the unique conjugacy class. When \(m=23\), \(\nu \) and \(\nu ^{-1}\) represent two distinct conjugacy classes.

  4. Indeed, every quadratic form Q (on some finite, abelian group D) has a unique associated bilinear form \(B_Q\). On the other hand, given a finite bilinear form B, there are |D/2D| many quadratic forms Q with \(B_Q=B\).

References

  1. Bakalov, B.N., Kac, V.G.: Twisted modules over lattice vertex algebras. In: Doebner, H.-D. and Dobrev, V.K. (eds.) Lie Theory and Its Applications in Physics V, pp. 3–26. World Scientific (2004). (ar**v:math/0402315v3 [math.QA])

  2. Borcherds, R.E.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Nat. Acad. Sci. USA 83(10), 3068–3071 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Borcherds, R.E.: Generalized Kac–Moody algebras. J. Algebra 115(2), 501–512 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borcherds, R.E.: Lattices like the Leech lattice. J. Algebra 130(1), 219–234 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borcherds, R.E.: The monster Lie algebra. Adv. Math. 83(1), 30–47 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borcherds, R.E.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109(2), 405–444 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Borcherds, R.E.: A characterization of generalized Kac–Moody algebras. J. Algebra 174(3), 1073–1079 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998). ar**v: alg-geom/9609022v2

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Borcherds, R.E.: Reflection groups of Lorentzian lattices. Duke Math. J. 104(2), 319–366 (2000). ar**v: math/9909123v1

    Article  MathSciNet  MATH  Google Scholar 

  10. Borcherds, R.E.: Problems in moonshine. In: First International Congress of Chinese Mathematicians, Volume 20 of AMS/IP Stud. Adv. Math., pp. 3–10. Amer. Math. Soc. (2001)

  11. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carnahan, S: Generalized moonshine IV: monstrous Lie algebras (2016). ar**v:1208.6254v3 [math.RT]

  13. Carnahan, S., Miyamoto, M.: Regularity of fixed-point vertex operator subalgebras (2016). ar**v:1603.05645v4 [math.RT]

  14. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford University Press, Oxford (1985). (With computational assistance from J. G. Thackray)

    MATH  Google Scholar 

  15. Creutzig, T., Klauer, A., Scheithauer, N.R.: Natural constructions of some generalized Kac–Moody algebras as bosonic strings. Commun. Number Theory Phys. 1(3), 453–477 (2007). ar**v:0801.1829v1

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, C.: Vertex algebras associated with even lattices. J. Alg. 161(1), 245–265 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, C., Lepowsky, J.I.: Generalized Vertex Algebras and Relative Vertex Operators, Volume 112 of Progress of Mathematics. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  18. Dong, C., Lepowsky, J.I.: The algebraic structure of relative twisted vertex operators. J. Pure Appl. Algebra 110(3), 259–295 (1996). ar**v:q-alg/9604022v1

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, C., Li, H., Mason, G.: Regularity of rational vertex operator algebras. Adv. Math. 132(1), 148–166 (1997). ar**v:q-alg/9508018v1

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized moonshine. Commun. Math. Phys. 214, 1–56 (2000). ar**v:q-alg/9703016v2

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Dong, C., Mason, G.: On quantum Galois theory. Duke Math. J. 86(2), 305–321 (1997). ar**v:hep-th/9412037v1

    Article  MathSciNet  MATH  Google Scholar 

  22. Dong, C., Mason, G.: Holomorphic vertex operator algebras of small central charge. Pac. J. Math. 213(2), 253–266 (2004). ar**v:math/0203005v1

    Article  MathSciNet  MATH  Google Scholar 

  23. Dong, C., Mason, G.: Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. 2004(56), 2989–3008 (2004). ar**v:math/0201318v1

    Article  MathSciNet  MATH  Google Scholar 

  24. Dong, C., Ren, L., Xu, F.: On orbifold theory. Adv. Math. 321, 1–30 (2017). ar**v:1507.03306v2

    Article  MathSciNet  MATH  Google Scholar 

  25. Ebeling, W.: Lattices and codes. Adv. Lectures Math. Springer, 3rd edn (2013). A course partially based on lectures by Friedrich Hirzebruch

  26. van Ekeren, J., Möller, S., Scheithauer, N.R.: Construction and classification of holomorphic vertex operator algebras. J. Reine Angew. Math. 759, 61–99 (2020). ar**v:1507.08142v3 [math.RT]

    Article  MathSciNet  MATH  Google Scholar 

  27. Feigin, B.L.: The semi-infinite homology of Kac–Moody and Virasoro Lie algebras. Russ. Math. Surv. 39(2), 155–156 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frenkel, I.B., Garland, H., Zuckerman, G.J.: Semi-infinite cohomology and string theory. Proc. Nat. Acad. Sci. USA 83(22), 8442–8446 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.I.: On Axiomatic Approaches to Vertex Operator Algebras and Modules, Volume 104 of Mem. Amer. Math. Soc. Amer. Math. Soc. (1993)

  30. Frenkel, I.B., Lepowsky, J.I., Meurman, A.: Vertex Operator Algebras and the Monster, Volume 134 of Pure Appl. Math. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  31. Gritsenko, V.A., Nikulin, V.V.: On the classification of Lorentzian Kac–Moody-algebras. Russ. Math. Surv. 57(5), 921–979 (2002). ar**v:math/0201162v2

    Article  MathSciNet  MATH  Google Scholar 

  32. Gritsenko, V.A., Nikulin, V.V.: Lorentzian Kac–Moody algebras with Weyl groups of 2-reflections. Proc. Lond. Math. Soc. (3) 116(3), 485–533 (2018). ar**v:1602.08359v2

    Article  MathSciNet  MATH  Google Scholar 

  33. Hirzebruch, Friedrich, B., Thomas, J.R.: Manifolds and Modular Forms, Volume E20 of Aspects Math. Vieweg, 2nd edn (1994). With appendices by Nils-Peter Skoruppa and Paul Baum

  34. Höhn, G., Scheithauer, N.R.: A natural construction of Borcherds’ fake baby monster lie algebra. Am. J. Math. 125(3), 655–667 (2003). ar**v:math/0312106v1

    Article  MathSciNet  MATH  Google Scholar 

  35. Höhn, G., Scheithauer, N.R.: A generalized Kac–Moody algebra of rank 14. J. Alg. 404, 222–239 (2014). ar**v:1009.5153v2

    Article  MathSciNet  MATH  Google Scholar 

  36. Jurisich, E.: An exposition of generalized Kac–Moody algebras. In: Lie Algebras and Their Representations, Volume 194 of Contemp. Math. Amer. Math. Soc., pp. 121–159 (1996)

  37. Kac, V.G., Raina, A.K., Rozhkovskaya, N.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Volume 29 of Advanced Series In Mathematical Physics, 2nd edn. World Scientific (2013)

  38. Lam, C.H.: Cyclic orbifolds of lattice vertex operator algebras having group-like fusions. Lett. Math. Phys. 110(5), 1081–1112 (2019). ar**v:1805.10778v2

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Lepowsky, J.I., Li, H,: Introduction to Vertex Operator Algebras and Their Representations, Volume 227 of Progr. Math. Birkhäuser (2004)

  40. Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 96(3), 279–297 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lian, B.H., Zuckerman, G.J.: BRST cohomology and highest weight vectors I. Commun. Math. Phys. 135(3), 547–580 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Lian, B.H., Zuckerman, G.J.: New perspectives on the BRST-algebraic structure of string theory. Commun. Math. Phys. 154(3), 613–646 (1993). ar**v:hep-th/9211072v1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Miranda, R., Morrison, D.R.: Embeddings of integral quadratic forms (2009). https://www.math.colostate.edu/~miranda/preprints/eiqf.pdf

  44. Miyamoto, M.: \(C_2\)-cofiniteness of cyclic-orbifold models. Commun. Math. Phys. 335(3), 1279–1286 (2015). ar**v:1306.5031v1

    Article  MATH  ADS  Google Scholar 

  45. Miyamoto, M., Tanabe, K.: Uniform product of \(A_{g, n}(V)\) for an orbifold model \(V\) and \(G\)-twisted Zhu algebra. J. Algebra 274(1), 80–96 (2004). ar**v:math/0112054v3

    Article  MathSciNet  MATH  Google Scholar 

  46. Möller, S.: Zur Klassifikation automorpher Produkte singulären Gewichts. Master’s thesis, Technische Universität Darmstadt (2012)

  47. Möller, S.: A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications. Ph.D. thesis, Technische Universität Darmstadt (2016). ar**v:1611.09843v1 [math.QA]

  48. Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Math. USSR Izv. 14(1), 103–167 (1980)

    Article  MATH  Google Scholar 

  49. Scheithauer, N.R.: Vertex Algebras, Lie Algebras and Superstrings. Ph.D. thesis, Universität Hamburg (1997). ar**v:hep-th/9802058

  50. Scheithauer, N.R.: Vertex algebras, Lie algebras, and superstrings. J. Algebra 200(2), 363–403 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Scheithauer, N.R.: The fake monster superalgebra. Adv. Math. 151(2), 226–269 (2000). ar**v:math/9905113v1

    Article  MathSciNet  MATH  Google Scholar 

  52. Scheithauer, N.R.: Generalized Kac–Moody algebras, automorphic forms and Conway’s group I. Adv. Math. 183(2), 240–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Scheithauer, N.R.: Moonshine for Conway’s Group. Ruprecht-Karls-Universiät Heidelberg, Habilitationsschrift (2004)

    Google Scholar 

  54. Scheithauer, N.R.: On the classification of automorphic products and generalized Kac–Moody algebras. Invent. Math. 164(3), 641–678 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Scheithauer, N.R.: Generalized Kac–Moody algebras, automorphic forms and Conway’s group II. J. Reine Angew. Math. 625, 125–154 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Scheithauer, Nils R.: The Weil representation of \({\rm SL}_2({\mathbb{Z}})\) and some applications. Int. Math. Res. Not. 2009(8), 1488–1545 (2009)

    Article  MATH  Google Scholar 

  57. Scheithauer, N.R.: Some constructions of modular forms for the Weil representation of \({\rm SL}_2({\mathbb{Z}})\). Nagoya Math. J. 220, 1–43 (2015)

    Article  MathSciNet  Google Scholar 

  58. Schellekens, A.N.: Meromorphic \(c=24\) conformal field theories. Commun. Math. Phys. 153(1), 159–185 (1993). ar**v:hep-th/9205072v1

    Article  MathSciNet  MATH  Google Scholar 

  59. The Sage Developers. SageMath, the Sage Mathematics Software System. http://www.sagemath.org

  60. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9(1), 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zuckerman, G.J.: Modular forms, strings, and ghosts. In: Leon, E., and Gunning, R.C. (eds) Theta Functions Bowdoin 1987, Volume 49 of Proc. Sympos. Pure Math., pp. 273–284. Amer. Math. Soc. (1989)

Download references

Acknowledgements

The author would like to thank Jethro van Ekeren, Gerald Höhn, Ching Hung Lam, Jim Lepowsky, Maximilian Rössler and Nils Scheithauer for helpful discussions. The author thanks the two anonymous referees for their detailed comments. The author was partially supported by a scholarship from the Studienstiftung des deutschen Volkes and by the Deutsche Forschungsgemeinschaft through the project “Infinite-dimensional Lie Algebras in String Theory”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Möller.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möller, S. Natural Construction of Ten Borcherds-Kac-Moody Algebras Associated with Elements in \(M_{23}\). Commun. Math. Phys. 383, 35–70 (2021). https://doi.org/10.1007/s00220-021-04018-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04018-w

Navigation