Log in

Full Factors and Co-amenable Inclusions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that if M is a full factor and \(N \subset M\) is a co-amenable subfactor with expectation, then N is also full. This answers a question of Popa from 1986. We also generalize a theorem of Tomatsu by showing that if M is a full factor and \(\sigma :G \curvearrowright M\) is an outer action of a compact group G, then \(\sigma \) is automatically minimal and \(M^G\) is a full factor which has w-spectral gap in M. Finally, in the appendix, we give a proof of the fact that several natural notions of co-amenability for an inclusion \(N\subset M\) of von Neumann algebras are equivalent, thus closing the cycle of implications given in Anantharaman-Delaroche’s paper in 1995.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman-Delaroche, C.: Amenable correspondences and approximation properties for von Neumann algebras. Pac. J. Math. 171, 309–341 (1995)

    Article  MathSciNet  Google Scholar 

  2. Ando, H., Haagerup, U.: Ultraproducts of von Neumann algebras. J. Funct. Anal. 266, 6842–6913 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bédos, E.: On actions of amenable groups on \({{\rm II}}_{1}\)-Factors. J. Funct. Anal. 91, 404–414 (1990)

    Article  MathSciNet  Google Scholar 

  4. Bisch, D.: On the existence of central sequences in subfactors. Trans. Am. Math. Soc. 321, 117–128 (1990)

    Article  MathSciNet  Google Scholar 

  5. Bisch, D.: Central sequences in subfactors II. Proc. Am. Math. Soc. 121, 725–731 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Brothier, A., Boutonnet, R.: Crossed products by locally compact groups: intermediate subfactors. J. Oper. Theory 79, 101–137 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Choda, M.: A characterization of crossed product actions by discrete outer automorphism groups. J. Math. Soc. Jpn. 31, 257–261 (1979)

    Article  Google Scholar 

  8. Choda, M.: Inner amenability and fullness. Proc. Am. Math. Soc. 86, 663–666 (1982)

    Article  MathSciNet  Google Scholar 

  9. Connes, A.: Almost periodic states and factors of type \({\rm III_1}\). J. Funct. Anal. 16, 415–445 (1974)

    Article  Google Scholar 

  10. Connes, A.: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann. Ann. Inst. Fourier (Grenoble) 24, 121–155 (1974)

    Article  MathSciNet  Google Scholar 

  11. Connes, A.: Classification of injective factors. Cases \({\rm II}_1\), \({\rm II}_\infty \), \({\rm III}_\lambda \), \(\lambda \ne 1\). Ann. Math. 74, 73–115 (1976)

    Article  Google Scholar 

  12. Effros, E.G.: Property \(\Gamma \) and inner amenability. Proc. Am. Math. Soc. 47, 483–486 (1975)

    MathSciNet  MATH  Google Scholar 

  13. Haagerup, U.: The standard form of von Neumann algebras. Math. Scand. 37, 271–283 (1975)

    Article  MathSciNet  Google Scholar 

  14. Haagerup, U.: Selfpolar forms, conditional expectations and the weak expectation property for \({\rm C}^*\)-algebras. Preprint (1993)

  15. Hjorth, G., Kechris, A.S.: Rigidity theorems for actions of product groups and countable Borel equivalence relations. Mem. Am. Math. Soc. 833, 1–109 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Hoegh-Krohn, R., Landstad, M.B., Stormer, E.: Compact ergodic groups of automorphisms. Ann. Math. 114, 75–86 (1981)

    Article  MathSciNet  Google Scholar 

  17. Houdayer, C., Marrakchi, A., Verraedt, P.: Fullness and Connes’ \(\tau \) invariant of type \({\rm III}\) tensor product factors. To appear in J. Math. Pures Appl. ar**v:1611.07914

  18. Ioana, A.: Cocycle superrigidity for profinite actions of property (T) groups. Duke Math. J. 157(2), 337–367 (2011)

    Article  MathSciNet  Google Scholar 

  19. Ioana, A., Vaes, S.: Spectral gap for inclusions of von Neumann algebras. Appendix to the article Cartan subalgebras of amalgamated free product \({\rm II}_1\) factors by A. Ioana in Ann. Sci. École Norm. Sup. 48, 71–130 (2015)

  20. Jones, V.F.R.: Central sequences in crossed products of full factors. Duke Math. J. 49, 29–33 (1982)

    Article  MathSciNet  Google Scholar 

  21. Junge, M., Parcet, J.: Mixed-norm inequalities and operator space \(L_p\) embedding theory. Mem. Am. Math. Soc. 203, no. 953, vi+155 (2010)

  22. Marrakchi, A.: Spectral gap characterization of full type \({\rm III}\) factors. To appear in J. Reine Angew. Math. ar**v:1605.09613

  23. Marrakchi, A.: Fullness of crossed products of factors by discrete groups. Preprint. ar**v:1811.08274

  24. Marrakchi, A.: Full factors, bicentralizer flow and approximately inner automorphisms. Preprint. ar**v:1811.10253

  25. Monod, N., Popa, S.: On co-amenability for groups and von Neumann algebras. Comptes Rendus Mathématiques de l’Académie des Sciences, La Société Royale du Canada 25(3), 82–87 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Murray, F., von Neumann, J.: Rings of operators. \({\rm IV}\). Ann. Math. 44, 716–808 (1943)

    Article  MathSciNet  Google Scholar 

  27. Ocneanu, A.: Actions of Discrete Amenable Groups on von Neumann Algebras. Lecture Notes in Mathematics, vol. 1138. Springer, Berlin (1985)

    Book  Google Scholar 

  28. Ozawa, N., Popa, S.: On a class of \(\rm {II}_1\) factors with at most one Cartan subalgebra. Ann. Math. 172, 713–749 (2010)

    Article  MathSciNet  Google Scholar 

  29. Paschke, W.L.: Integrable group actions on von Neumann algebras. Math. Scand. 40, 234–248 (1977)

    Article  MathSciNet  Google Scholar 

  30. Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. de l’É.N.S. (4) 19, 57–106 (1986)

    MathSciNet  MATH  Google Scholar 

  31. Pisier, G.: Projections from a von Neumann algebra onto a subalgebra. Bull. Soc. Math. France 123, 139–153 (1995)

    Article  MathSciNet  Google Scholar 

  32. Popa, S.: Maximal injective subalgebras in factors associated with free groups. Adv. Math. 50, 27–48 (1983)

    Article  MathSciNet  Google Scholar 

  33. Popa, S.: Correspondences. INCREST preprint (1986)

  34. Popa, S.: On a class of type \({\rm II_1}\) factors with Betti numbers invariants. Ann. Math. 163, 809–899 (2006)

    Article  MathSciNet  Google Scholar 

  35. Popa, S.: Strong rigidity of \({\rm II_1}\) factors arising from malleable actions of w-rigid groups \(\rm I\). Invent. Math. 165, 369–408 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. Shlyakhtenko, D.: Some applications of freeness with amalgamation. J. Reine Angew. Math. 500, 191–212 (1998)

    Article  MathSciNet  Google Scholar 

  37. Tomatsu, R.: Centrally free actions of amenable \(C^*\)-tensor categories on von Neumann algebras. Preprint. ar**v:1812.04222

  38. Vaes, S.: Strictly outer actions of groups and quantum groups. J. Reine Angew Math. 578, 147–184 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Vaes, S.: An inner amenable group whose von Neumann algebra does not have property Gamma. Acta Math. 208, 389–394 (2009)

    Article  MathSciNet  Google Scholar 

  40. Woronowicz, S.L.: Selfpolar forms and their applications to the \(\rm C^*\)-algebra theory. Rep. Math. Phys. 6, 487–495 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  41. Xu, Q.: A description of \((C_p[L_p(M)], R_p[L_p(M)])_\theta \). Proc. R. Soc. Edinb. Sect. A 135, 1073–1083 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks Jan Cameron for sharing his ideas on Property \(\Gamma \) for an earlier approach to the problem, and is grateful for the hospitality of the Lancaster University Department of Mathematics and Statistics. The second author is grateful to Yuki Arano for a thought-provoking discussion regarding Theorem 4.1. We are also grateful to Adrian Ioana for providing us with the reference [15] used in Remark 3.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Marrakchi.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

JB is partially supported by a Lancaster University (STEM) Fulbright Scholar Award.

AM is a JSPS International Research Fellow (PE18760).

NO is partially supported by JSPS KAKENHI 17K05277 and 15H05739.

Appendix A. Bimodule Characterization of Co-amenability

Appendix A. Bimodule Characterization of Co-amenability

Let M be a von Neumann algebra. We will denote by \({\mathrm{L}}^2(M)\) the standard Hilbert space for M, by \(J_M\) the modular conjugation, by \({\mathrm{L}}^2(M)^+\) the natural positive cone, and by \(\pi _M :M \odot M^{\mathrm {op}}\rightarrow \mathbf {B}({\mathrm{L}}^2(M))\) the natural binormal \(*\)-representation. We define the norm

$$\begin{aligned} M \odot M^{\mathrm {op}}\ni T \mapsto \Vert T \Vert _{\pi _M}=\Vert \pi _M(T) \Vert _{\mathbf {B}({\mathrm{L}}^2(M))}. \end{aligned}$$

For \(x \in M\), we will use the notation \(\overline{x}=(x^*)^{\mathrm {op}}=(x^{\mathrm {op}})^* \in M^{\mathrm {op}}\).

Haagerup has made a deep study of the norm

$$\begin{aligned} M^{\oplus n} \ni (x_1, \ldots , x_n) \mapsto \Vert \sum _i x_i \otimes \overline{x_i} \Vert _{\pi _M} \end{aligned}$$

and obtained many remarkable results in [14], but we need only the following (Theorem 2.1 in [14]). This was proved earlier in the semifinite case by Pisier (Theorem 2.1 in [31]). Alternative proofs are found in [21] and [41].

Theorem A.1

(Pisier–Haagerup). For any von Neumann algebra M and any \(x_1,\ldots ,x_n\in M\),

$$\begin{aligned} \Vert \sum _i x_i \otimes \overline{x_i} \Vert _{\pi _M}^{1/2}=\Vert (x_1,\ldots ,x_n)\Vert _{1/2}, \end{aligned}$$

where the latter norm is the complex interpolation of equivalent norms \(\Vert \,\cdot \,\Vert _{0}\) and \(\Vert \,\cdot \,\Vert _{1}\) on \(M^{\oplus n}\) that are given by

$$\begin{aligned} \Vert (a_1,\ldots ,a_n)\Vert _{0}:=\Vert \sum _i a_ia_i^*\Vert ^{1/2} \text{ and } \Vert (a_1,\ldots ,a_n)\Vert _{1}:=\Vert \sum _i a_i^*a_i\Vert ^{1/2}. \end{aligned}$$

In particular, for any (not necessarily normal) unital completely positive map \(\theta \) from M into a von Neumann algebra N and any \(x_1,\ldots ,x_n\in M\),

$$\begin{aligned} \Vert \sum _i \theta (x_i) \otimes \overline{\theta (x_i)} \Vert _{\pi _N} \le \Vert \sum _i x_i \otimes \overline{x_i} \Vert _{\pi _M}. \end{aligned}$$

Note that the second half of Theorem A.1 is a trivial consequence of the interpolation theorem, because \(\theta \otimes \mathrm{id}_n:(M^{\oplus n},\Vert \,\cdot \,\Vert _{t}) \rightarrow (N^{\oplus n},\Vert \,\cdot \,\Vert _{t})\) is contractive at \(t=0,1\). The purpose of this appendix is to give a proof of the following corollary to Theorem A.1.

Corollary A.2

(cf. Corollary 3.8 in [14]). For von Neumann algebras \(N\subset M\), the following are equivalent.

  1. (i)

    There is a conditional expectation of M onto N.

  2. (ii)

    For every \(x_1,\ldots ,x_n\in N\),

    $$\begin{aligned} \Vert \sum _i x_i \otimes \overline{x_i} \Vert _{\pi _N}=\Vert \sum _i x_i \otimes \overline{x_i} \Vert _{\pi _M}. \end{aligned}$$
  3. (iii)

    \({}_N{\mathrm{L}}^2(N)_N\prec {}_N{\mathrm{L}}^2(M)_N\). Namely, for every \(x_i,y_i\in N\),

    $$\begin{aligned} \Vert \sum _i x_i \otimes \overline{y_i} \Vert _{\pi _N} \le \Vert \sum _i x_i \otimes \overline{y_i} \Vert _{\pi _M}. \end{aligned}$$

The following reformulation of Corollary A.2 closes the circle of implications of Propositions 2.5 in [1].

Corollary A.3

(cf. Proposition 3.6 in [1]). Let \({}_M\mathcal {H}_N\) be an M-N correspondence and put \(N_1=\mathbf {B}_{N^{\mathrm {op}}}(\mathcal {H})\), the commutant of the right N-action. Then the following are equivalent.

  1. (i)

    \({}_M\mathcal {H}_N\) is left-amenable, i.e. \({}_M {\mathrm{L}}^2(M)_M\prec {}_M {\mathrm{L}}^2(N_1)_M\).

  2. (ii)

    There is a conditional expectation of \(N_1\) onto M.

We recall the notion of the selfpolar forms ( [10, 40]), which plays a central role in [14] as well as in the proof of Corollary A.2. Associated with any normal state \(\varphi \) on M, there are a canonical unit vector \(\xi _\varphi \) in \({\mathrm{L}}^2(M)^+\) and the selfpolar form \(s_\varphi :M\times M\rightarrow \mathbb {C}\) given by

$$\begin{aligned} s_\varphi (x,y)=\mathopen {\langle }\pi _M(x \otimes \overline{y})\xi _\varphi ,\xi _\varphi \mathclose {\rangle }_{{\mathrm{L}}^2(M)}. \end{aligned}$$

Proposition A.4

(Theorems 1.1 and 2.1 in [40]). The selfpolar form \(s_\varphi \) satisfies the following properties.

  1. (i)

    \(s_\varphi \) is a positive semi-definite sesqui-linear form on \(M\times M\),

  2. (ii)

    \(s_\varphi \ge 0\) on \(M_+\times M_+\),

  3. (iii)

    \(s_\varphi (x,1)=\varphi (x)\) for \(x\in M\), and

  4. (iv)

    \(s_{\varphi }\) is selfpolar.

Moreover, if s is any sesqui-linear form on M which satisfies (i)–(iii) above (with \(s_\varphi \) exchanged by s), then \(s(x,x)\le s_\varphi (x,x)\) for every \(x\in M\).

We do not introduce the selfpolar property (iv), since we will not use it (in an explicit way). We use the following well-known variant of the Hahn–Banach theorem.

Lemma A.5

Let C be a convex cone of a real vector space V, \(p:V\rightarrow \mathbf {R}\) a sublinear function, and \(q:C\rightarrow \mathbf {R}\) a superlinear function. This means that \(p(x+y)\le p(x)+p(y)\) and \(p(\lambda x)=\lambda p(x)\) for every \(x,y\in V\) and \(\lambda \in \mathbf {R}_{\ge 0}\); and that \(-q\) is sublinear. If \(q\le p\) on C, then there is a linear functional \(\psi \) on V such that \(\psi \le p\) on V and \(q\le \psi \) on C.

Proof

Observe that \(r(x):=\inf \{ p(x+y)-q(y) : y\in C\}\) is a sublinear function on V such that \(-p(-x) \le r(x) \le p(x)\) for \(x\in V\) (in particular r takes values in \(\mathbf {R}\)). By the Hahn–Banach theorem, there is a linear functional \(\psi \) on V such that \(\psi \le r\). One has \(-\psi (x)\le r(-x)\le -q(x)\) for \(x\in C\). \(\quad \square \)

Proof of Corollary A.2

The equivalence \((\mathrm{i})\Leftrightarrow (\mathrm{ii})\) is proved in Corollary 3.8 in [14]. That \((\mathrm{i})\Rightarrow (\mathrm{ii})\) follows from Theorem A.1. That \((\mathrm{iii})\Rightarrow (\mathrm{i})\) is proved in Proposition 2.5 in [1]. Thus it is left to show \((\mathrm{ii})\Rightarrow (\mathrm{iii})\). We closely follow the proof of Corollary 3.8 (Theorem 3.7) in [14]. Take any normal state \(\varphi \) on N and consider the convex cone \(C:=\{\sum _i x_i\otimes \overline{x_i} : x_i \in N \}\subset M\odot M^{\mathrm {op}}\) and the seminorm \(p(\,\cdot \,)=\Vert \pi _M(\,\cdot \,)\Vert _{\mathbf {B}(({\mathrm{L}}^2(M))}\) on \(M\odot M^{\mathrm {op}}\). Since

$$\begin{aligned} \sum _i s_{\varphi }(x_i,x_i) =\mathopen {\langle }\pi _N(\sum _i x_i\otimes \overline{x_i})\xi _\varphi ,\xi _\varphi \mathclose {\rangle } \le p(\sum _i x_i\otimes \overline{x_i}) \end{aligned}$$

by condition (ii), Lemma A.5 yields \(\psi \in \mathbf {B}({\mathrm{L}}^2(M))^*\) of norm 1 such that \(s_{\varphi }(x,x)\le \mathfrak {R}\psi (\pi _M(x \otimes \overline{x}))\) for \(x\in N\). Observe that \(\Vert \psi \Vert \le 1\) and \(1\le \mathfrak {R}\psi (1)\) imply that \(\psi \) is a state. The state \(\psi ^*\) on \(\mathbf {B}({\mathrm{L}}^2(M))\) defined by \(\psi ^*(T)=\psi (J_M T^* J_M)\) satisfies \(\psi ^*(\pi _M(x \otimes \overline{y}))=\overline{\psi (\pi _M(y \otimes \overline{x}))}\) for every \(x,y\in M\). Thus by replacing \(\psi \) with the state \(\frac{1}{2}(\psi +\psi ^*)\), we may assume that \(s:M\times M\ni (x,y)\mapsto \psi (\pi _M(x \otimes \overline{y}))\) is a sesqui-linear form such that \(s_{\varphi }(x,x) \le s(x,x)\) for every \(x\in N\). Since \(s_{\varphi }(1+\lambda x,1+\lambda x) \le s(1+\lambda x,1+\lambda x)\) for all \(\lambda \in \mathbf {R}\) and a fixed \(x\in N\), one sees \(\varphi (x)=s(x,1)\) for \(x\in N\). It follows from Proposition A.4 that \(s_{\varphi }(x,x)=s(x,x)\) for every \(x\in N\). Hence by polarization identity, \(s_{\varphi }=s\) and so for every \(T=\sum _i x_i \otimes \overline{y_i} \in N \odot N^{\mathrm {op}}\) we have

$$\begin{aligned} \langle \pi _N(T) \xi _\varphi ,\xi _\varphi \rangle = \sum _i s_\varphi (x_i,y_i)=\sum _i s(x_i,y_i) =\psi (\pi _M(T)). \end{aligned}$$

Since \(\{ \xi _\varphi \}_\varphi \) is a \(\pi _N\)-cyclic family, one obtains

$$\begin{aligned} \Vert \pi _N(T) \Vert _{\mathbf {B}({\mathrm{L}}^2(N))} \le \Vert \pi _M(T) \Vert _{\mathbf {B}({\mathrm{L}}^2(M))} \end{aligned}$$

which is precisely condition (iii). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannon, J., Marrakchi, A. & Ozawa, N. Full Factors and Co-amenable Inclusions. Commun. Math. Phys. 378, 1107–1121 (2020). https://doi.org/10.1007/s00220-020-03816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03816-y

Navigation