Log in

Some Breathers and Multi-breathers for FPU-Type Chains

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider several breather solutions for FPU-type chains that have been found numerically. Using computer-assisted techniques, we prove that there exist true solutions nearby, and in some cases, we determine whether or not the solution is spectrally stable. Symmetry properties are considered as well. In addition, we construct solutions that are close to (possibly infinite) sums of breather solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arioli, G., Gazzola, F.: Existence and numerical approximation of periodic motions of an infinite lattice of particles. ZAMP 46, 898–912 (1995)

  2. Arioli G., Gazzola F.: Periodic motions of an infinite lattice of particles with nearest neighbour interaction. Nonlin. Anal. TMA 26, 1103–1114 (1996)

    Article  Google Scholar 

  3. Arioli G., Gazzola F., Terracini S.: Multibump periodic motions of an infinite lattice of particles. Math. Zeit. 223, 627–642 (1996)

    Article  MathSciNet  Google Scholar 

  4. Arioli G., Koch H., Terracini S.: Two novel methods and multi-mode periodic solutions for the Fermi–Pasta–Ulam model. Commun. Math. Phys. 255, 1–19 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. Arioli G., Koch H.: Spectral stability for the wave equation with periodic forcing. J. Differ. Equ. 265, 2470–2501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ada Reference Manual, ISO/IEC 8652:2012(E). Available e.g. at http://www.ada-auth.org/arm.html

  7. A free-software compiler for the Ada programming language, which is part of the GNU Compiler Collection; see http://gnu.org/software/gnat/. Accessed 12 Sept 2016

  8. Berman G.P., Izraileva F.M.: The Fermi–Pasta–Ulam problem: fifty years of progress. Chaos 15, 015104 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Braun O.M., Kivshar Y.S.: The Frenkel–Kontorova model. Springer, Berlin (2004)

    Book  Google Scholar 

  10. Fontich E., Llave R., Sire Y.: Construction of invariant whiskered tori by a parameterization method. Part II: quasi-periodic and almost periodic breathers in coupled map lattices. J. Differ. Equ. 259, 2180–2279 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fontich E., Llave R., Martin P.: Dynamical systems on lattices with decaying interaction II: hyperbolic sets and their invariant manifolds. J. Differ. Equ. 250, 2887–2926 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gorbach A.V., Flach S.: Discrete breathers—advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  ADS  Google Scholar 

  13. Gallavotti G. (ed.): The Fermi–Pasta–Ulam problem. A status report, Lecture Notes in Physics 728. Springer, Berlin (2008)

  14. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1976)

    MATH  Google Scholar 

  15. Kevrekidis P., Cuevas-Maraver J., Pelinovsky D.: Energy Criterion for the spectral stability of discrete breathers. Phys. Rev. Lett. 117, 094101 (2016)

    Article  ADS  Google Scholar 

  16. Koukouloyannis V., Kevrekidis P.: On the stability of multibreathers in Klein–Gordon chains. Nonlinearity 22, 2269–2285 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. MacKay R.: Discrete breathers: classical and quantum. Phys. A 288, 174–198 (2000)

    Article  MathSciNet  Google Scholar 

  18. Pankov A.: Traveling Waves And Periodic Oscillations in Fermi–Pasta–Ulam Lattices. Imperial College Press, UK (2005)

    Book  Google Scholar 

  19. Pelinovsky D., Sakovich A.: Multi-site breathers in Klein–Gordon lattices: stability, resonances, and bifurcations. Nonlinearity 25, 3423–3451 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Rabinowitz P.H.: Multibump solutions of differential equations: an overview. Chin. J. Math. 24, 1–36 (1996)

    MathSciNet  MATH  Google Scholar 

  21. The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard for Binary Floating–Point Arithmetic, ANSI/IEEE Std 754–2008

  22. The MPFR library for multiple-precision floating-point computations with correct rounding. GNU MPFR version 4.0.2 (2019). http://www.mpfr.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Arioli.

Additional information

Communicated by C. Liverani

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Arioli: Supported in part by the PRIN project “Equazioni alle derivate parziali e disuguaglianze analitico-geometriche associate”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 6822 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arioli, G., Koch, H. Some Breathers and Multi-breathers for FPU-Type Chains. Commun. Math. Phys. 372, 1117–1146 (2019). https://doi.org/10.1007/s00220-019-03417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03417-4

Navigation