Log in

Equidistribution for Nonuniformly Expanding Dynamical Systems, and Application to the Almost Sure Invariance Principle

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({T : M \to M}\) be a nonuniformly expanding dynamical system, such as logistic or intermittent map. Let \({v : M \to \mathbb{R}^d}\) be an observable and \({v_n = \sum_{k=0}^{n-1} v \circ T^k}\) denote the Birkhoff sums. Given a probability measure \({\mu}\) on M, we consider v n as a discrete time random process on the probability space \({(M, \mu)}\). In smooth ergodic theory there are various natural choices of \({\mu}\), such as the Lebesgue measure, or the absolutely continuous T-invariant measure. They give rise to different random processes. We investigate relation between such processes. We show that in a large class of measures, it is possible to couple (redefine on a new probability space) every two processes so that they are almost surely close to each other, with explicit estimates of “closeness”. The purpose of this work is to close a gap in the proof of the almost sure invariance principle for nonuniformly hyperbolic transformations by Melbourne and Nicol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berkes I., Philipp W.: Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7, 29–54 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

  3. Chernov N.: Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122, 1061–1094 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chernov, N., Markarian, R.: Chaotic Billiards, volume 127 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2006)

  5. Cuny C., Merlevède F.: Strong invariance principles with rate for “reverse” martingales and applications. J. Theor. Probab. 28, 137–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Denker M., Philipp W.: Approximation by Brownian motion for Gibbs measures and flows under a function. Ergod. Theory Dyn. Syst 4, 541–552 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gibbs A.L., Su F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70, 419–435 (2002)

    Article  MATH  Google Scholar 

  8. Gouëzel S.: Almost sure invariance principle for dynamical systems by spectral methods. Ann. Probab. 38, 1639–1671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gouëzel S.: Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139, 29–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu H.: Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergod. Theory Dyn. Syst. 24, 495–524 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Korepanov A.: Linear response for intermittent maps with summable and nonsummable decay of correlations. Nonlinearity 29, 1735–1754 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Korepanov A., Kosloff Z., Melbourne I.: Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems. Stud. Math. 238, 59–89 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korepanov, A., Kosloff, Z., Melbourne, I.: Explicit coupling argument for nonuniformly hyperbolic transformations. Proc. R. Soc. Edinb. Sect. A (2016) (to appear)

  14. Korepanov, A., Kosloff, Z., Melbourne, I.: Martingal e-Coboundary Decomposition for Families of Dynamical Systems. Ann. Inst. H. Poincaré Anal. Non Linéaire (2016) (to appear)

  15. Liverani C., Saussol B., Vaienti S.: A probabilistic approach to intermittency. Ergod. Theory Dyn. Syst. 19, 671–685 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Melbourne I., Nicol M.: Almost sure invariance principle for nonuniformly hyperbolic systems. Commun. Math. Phys. 260, 131–146 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Melbourne I., Nicol M.: A vector-valued almost sure invariance principle for hyperbolic dynamical systems. Ann. Probab. 37, 478–505 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Philipp W., Stout W.: Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables, vol. 161. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  19. Sarig O.: Subexponential decay of correlations. Invent. Math. 150, 629–653 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Shortt R.M.: Universally measurable spaces: an invariance theorem and diverse characterizations. Fund. Math. 121, 169–176 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sinai Y. G.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–70 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Young L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Young L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zweimüller R.: Measure preserving transformations similar to Markov shifts. Israel J. Math. 173, 421–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Korepanov.

Additional information

Communicated by C. Liverani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korepanov, A. Equidistribution for Nonuniformly Expanding Dynamical Systems, and Application to the Almost Sure Invariance Principle. Commun. Math. Phys. 359, 1123–1138 (2018). https://doi.org/10.1007/s00220-017-3062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3062-z

Navigation