Log in

Impact of processing parameters on the quality attributes of spray-dried powders: a review

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The powdered form of various food products, including dairy-based and sugar-rich, is popular in the market due to their ease of processing and instant application. Spray drying is one of the most popular processing techniques to make food powders. The spray-drying process parameters, especially the drying temperatures and feed rate, have a significant influence on the quality attributes (such as color, moisture content, drying yield, wettability, water activity, proximate composition, and nutrient contents) of different food products. Recent studies revealed that at very high inlet/outlet air temperatures, the properties of the powdered products are adversely affected. Furthermore, sticking is a major problem during the spray-drying process. Kee** all these issues, this review focuses on providing insights on the effects of spray-drying process conditions and optimization of these conditions to overcome the problems associated with the process and ultimately obtain the best quality product with longer storage life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bajželj B et al (2014) Climate mitigation. Nat Clim Change 4(October):924–929. https://doi.org/10.1038/NCLIMATE2353

    Article  Google Scholar 

  2. Fitzpatrick JJ, Ahrné L (2005) Food powder handling and processing : Industry problems, knowledge barriers and research opportunities. Chem Eng Process 44:209–214. https://doi.org/10.1016/j.cep.2004.03.014

    Article  CAS  Google Scholar 

  3. Rahman MS (ed) (2007) Handbook of food preservation, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  4. Simuang J, Chiewchan N, Tansakul A (2004) Effects of fat content and temperature on the apparent viscosity of coconut milk. J Food Eng 64(2):193–197. https://doi.org/10.1016/j.jfoodeng.2003.09.032

    Article  Google Scholar 

  5. Bhandari B (2013) 1—Introduction to food powders. Woodhead publishing limited, Sawston

  6. Pragati S, Preeti B (2014) technological revolution in drying of fruit and vegetables. Int J Sci Res 3(10):705–711

    Google Scholar 

  7. Domínguez JM (2011) Drying. Compr Biotechnol Second Ed 2:727–735. https://doi.org/10.1016/B978-0-08-088504-9.00129-X

    Article  Google Scholar 

  8. Bhatta S, Janezic TS, Ratti C (2020) Freeze-drying of plant-based foods. Foods 9(1):1–22. https://doi.org/10.3390/foods9010087

    Article  CAS  Google Scholar 

  9. Ratti C (2013) Freeze drying for food powder production. Woodhead Publishing Limited, Sawston

    Book  Google Scholar 

  10. Woo MW, Bhandari B (2013) Spray drying for food powder production. Woodhead Publishing Limited, Sawston

    Book  Google Scholar 

  11. Jayasundera M, Adhikari B, Howes T, Aldred P (2011) Surface protein coverage and its implications on spray-drying of model sugar-rich foods: Solubility, powder production and characterisation. Food Chem 128(4):1003–1016. https://doi.org/10.1016/j.foodchem.2011.04.006

    Article  CAS  Google Scholar 

  12. Hardy Z, Jideani VA (2017) Foam-mat drying technology: a review. Crit Rev Food Sci Nutr 57(12):2560–2572. https://doi.org/10.1080/10408398.2015.1020359

    Article  CAS  PubMed  Google Scholar 

  13. Zafisah NS et al (2018) Processing of raw coconut milk for its value addition using spray and freeze drying techniques. J Food Process Eng 41(1):1–11. https://doi.org/10.1111/jfpe.12602

    Article  CAS  Google Scholar 

  14. Santana AA, Martin LGP, de Oliveira RA, Kurozawa LE, Park KJ (2017) Spray drying of babassu coconut milk using different carrier agents. Dry Technol 35(1):76–87. https://doi.org/10.1080/07373937.2016.1160111

    Article  CAS  Google Scholar 

  15. Saha D, Nanda SK, Yadav DN (2019) Optimization of spray drying process parameters for production of groundnut milk powder. Powder Technol 355:417–424. https://doi.org/10.1016/j.powtec.2019.07.066

    Article  CAS  Google Scholar 

  16. Nguyen DQ, Nguyen TH, Mounir S, Allaf K (2018) Effect of feed concentration and inlet air temperature on the properties of soymilk powder obtained by spray drying. Dry Technol 36(7):817–829. https://doi.org/10.1080/07373937.2017.1357040

    Article  CAS  Google Scholar 

  17. Patil V, Chauhan AK, Singh RP (2014) Optimization of the spray-drying process for develo** guava powder using response surface methodology. Powder Technol 253:230–236. https://doi.org/10.1016/j.powtec.2013.11.033

    Article  CAS  Google Scholar 

  18. Duangchuen J, Pathaveerat S, Noypitak S, Jermwongruttanachai P (2020) Effect of spray drying air temperature to the changes of properties of skimmed coconut milk powder. Appl Sci Eng Prog. https://doi.org/10.14416/j.asep.2020.04.009

    Article  Google Scholar 

  19. Chegini GR, Ghobadian B (2007) Spray dryer parameters for fruit juice drying. World J Agric Sci 3(2):230–236

    Google Scholar 

  20. Goula AM, Adamopoulos KG (2010) A new technique for spray drying orange juice concentrate. Innov Food Sci Emerg Technol 11(2):342–351. https://doi.org/10.1016/j.ifset.2009.12.001

    Article  CAS  Google Scholar 

  21. Papadakis SE, Gardeli C, Tzia C (2006) Spray drying of raisin juice concentrate. Dry Technol 24(2):173–180. https://doi.org/10.1080/07373930600559019

    Article  CAS  Google Scholar 

  22. Yousefi S, Emam-Djomeh Z, Mousavi SM (2011) Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). J Food Sci Technol 48(6):677–684. https://doi.org/10.1007/s13197-010-0195-x

    Article  PubMed  Google Scholar 

  23. Ferrari CC, Ribeiro CP, de Aguirre JM (2012) Secagem por atomização de polpa de amora-preta usando maltodextrina como agente carreador. Braz J Food Technol 15(2):157–165. https://doi.org/10.1590/s1981-67232012005000009

    Article  CAS  Google Scholar 

  24. Georgetti SR, Casagrande R, Souza CRF, Oliveira WP, Fonseca MJV (2008) Spray drying of the soybean extract: effects on chemical properties and antioxidant activity. LWT Food Sci Technol 41(8):1521–1527. https://doi.org/10.1016/j.lwt.2007.09.001

    Article  CAS  Google Scholar 

  25. Zouari A et al (2020) Effect of spray-drying parameters on the solubility and the bulk density of camel milk powder: a response surface methodology approach. Int J Dairy Technol 73(3):616–624. https://doi.org/10.1111/1471-0307.12690

    Article  CAS  Google Scholar 

  26. Kim EHJ, Chen XD, Pearce D (2009) Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. J Food Eng 94(2):169–181. https://doi.org/10.1016/j.jfoodeng.2008.10.020

    Article  CAS  Google Scholar 

  27. Di Renzo GC, Altieri G, Genovese F (2013) Donkey milk powder production and properties compared to other milk powders. Dairy Sci Technol 93(4–5):551–564. https://doi.org/10.1007/s13594-013-0108-7

    Article  CAS  Google Scholar 

  28. Quek SY, Chok NK, Swedlund P (2007) The physicochemical properties of spray-dried watermelon powders. Chem Eng Process 46(May 2006):386–392. https://doi.org/10.1016/j.cep.2006.06.020

    Article  CAS  Google Scholar 

  29. Goula AM, Adamopoulos KG, Kazakis NA, Goula AM, Adamopoulos KG, Kazakis NA (2007) Influence of spray drying conditions on tomato powder properties influence of spray drying conditions on. Dry technol. https://doi.org/10.1081/DRT-120038584

    Article  Google Scholar 

  30. Caliskan G, Dirim SN (2016) The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technol 287:308–314. https://doi.org/10.1016/j.powtec.2015.10.019

    Article  CAS  Google Scholar 

  31. de Oliveira AH, Mata MERMC, Fortes M, Duarte MEM, Pasquali M, Lisboa HM (2020) Influence of spray drying conditions on the properties of whole goat milk. Dry Technol. https://doi.org/10.1080/07373937.2020.1714647

    Article  Google Scholar 

  32. Miravet G, Alacid M, Obón JM, Fernández-López JA (2016) Spray-drying of pomegranate juice with prebiotic dietary fibre. Int J Food Sci Technol 51(3):633–640. https://doi.org/10.1111/ijfs.13021

    Article  CAS  Google Scholar 

  33. Ruano Uscategui DC, Ciro Velásquez HJ, Sepúlveda Valencia JU (2018) Concentrates of sugarcane juice and whey protein: Study of a new powder product obtained by spray drying of their combinations. Powder Technol 333(2017):429–438. https://doi.org/10.1016/j.powtec.2018.04.025

    Article  CAS  Google Scholar 

  34. Aragüez-Fortes Y, Robaina-Morales LM, Pino JA (2019) Optimization of the spray-drying parameters for develo** guava powder. J Food Process Eng 42(6):1–7. https://doi.org/10.1111/jfpe.13230

    Article  Google Scholar 

  35. Oliveira OW, Petrovick PR (2010) Secagem por aspersão (spray drying) de extratos vegetais: bases e aplicações. Rev Bras Farmacogn 20(4):641–650. https://doi.org/10.1590/s0102-695x2010000400026

    Article  Google Scholar 

  36. Silveira ACP, Perrone ÍT, Júnior PHR, De Carvalho AF (2013) SECAGEM POR SPRAY: UMA REVISÃO Spray drying: a review. Rev Inst Laticínios Cândido Tostes 68(391):51–58

    Article  Google Scholar 

  37. Moreira GÉG, Maia Costa MG, de Souza ACR, de Brito ES, de Medeiros MFD, Azeredo HMCD (2009) Physical properties of spray dried acerola pomace extract as affected by temperature and drying aids. LWT Food Sci Technol 42(2):641–645. https://doi.org/10.1016/j.lwt.2008.07.008

    Article  CAS  Google Scholar 

  38. Santana AA, de Oliveira RA, Pinedo AA, Kurozawa LE, Park KJ (2013) Microencapsulation of babassu coconut milk. Food Sci Technol 33(4):737–744. https://doi.org/10.1590/S0101-20612013000400020

    Article  Google Scholar 

  39. Islam Shishir MR, Taip FS, Aziz NA, Talib RA, Hossain Sarker MS (2016) Optimization of spray drying parameters for pink guava powder using RSM. Food Sci Biotechnol 25(2):461–468. https://doi.org/10.1007/s10068-016-0064-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laksono S, Kumalaningsih SP (2000) Technical and financial studies for choosing the right method of coconut milk powder production: effect of tween 80 and soy milk concentration. J Agric Technol 1(3):35–39

    Google Scholar 

  41. Braga MB, dos Rocha SCS, Hubinger MD (2018) Spray-drying of milk-blackberry pulp mixture: effect of carrier agent on the physical properties of powder, water sorption, and glass transition temperature. J Food Sci 83(6):1650–1659. https://doi.org/10.1111/1750-3841.14187

    Article  CAS  PubMed  Google Scholar 

  42. Samborska K (2019) Powdered honey—drying methods and parameters, types of carriers and drying aids, physicochemical properties and storage stability. Trends Food Sci Technol 88(May 2017):133–142. https://doi.org/10.1016/j.tifs.2019.03.019

    Article  CAS  Google Scholar 

  43. Fernanda M, Martins V, Durigon A, Dupas M, Borges J (2017) Production of mango powder by spray drying and cast-tape drying. Powder Technol 305:447–454. https://doi.org/10.1016/j.powtec.2016.10.027

    Article  CAS  Google Scholar 

  44. Jafari SM, Ghalegi Ghalenoei M, Dehnad D (2017) Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol 311:59–65. https://doi.org/10.1016/j.powtec.2017.01.070

    Article  CAS  Google Scholar 

  45. Pathare PB, Opara UL, Al-Said FAJ (2013) Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Technol 6(1):36–60. https://doi.org/10.1007/s11947-012-0867-9

    Article  CAS  Google Scholar 

  46. Du J, Ge ZZ, Xu Z, Zou B, Zhang Y, Li CM (2014) Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Drying Technol 32(10):1157–1166. https://doi.org/10.1080/07373937.2014.886259

    Article  CAS  Google Scholar 

  47. Nishad J, Selvan CJ, Ahmad S, Sowriappan M, Don J (2017) Effect of spray drying on physical properties of sugarcane juice powder (Saccharum officinarum L.). J Food Sci Technol 54(3):687–697. https://doi.org/10.1007/s13197-017-2507-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jaya S, Das H (2009) Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food Bioprocess Technol 2(1):89–95. https://doi.org/10.1007/s11947-007-0047-5

    Article  CAS  Google Scholar 

  49. Oakley DE (2004) Spray dryer modeling in theory and practice. Dry Technol 22(6):1371–1402. https://doi.org/10.1081/DRT-120038734

    Article  Google Scholar 

  50. Schulnies F, Kleinschmidt T (2018) Time consolidation of skim milk powder near the glass transition temperature. Int Dairy J 85:105–111. https://doi.org/10.1016/j.idairyj.2018.05.005

    Article  CAS  Google Scholar 

  51. Jayasundera JMMA, Kulatunga AR (2014) Spray-drying of coconut treacle into an amorphous powder. Emirates J Food Agric 26(8):672–678. https://doi.org/10.9755/ejfa.v26i8.17581

    Article  Google Scholar 

  52. Neves MIL, Desobry-Banon S, Perrone IT, Desobry S, Petit J (2019) Encapsulation of curcumin in milk powders by spray-drying: Physicochemistry, rehydration properties, and stability during storage. Powder Technol 345:601–607. https://doi.org/10.1016/j.powtec.2019.01.049

    Article  CAS  Google Scholar 

  53. Gordon M, Taylor JS (1953) Ideal copolymers and the second-order transitions of synthetic rubbers. I. noncrystalline copolymers. Rubber Chem Technol 26(2):323–335. https://doi.org/10.5254/1.3539818

    Article  CAS  Google Scholar 

  54. Shrestha AK, Howes T, Adhikari BP, Bhandari BR (2008) Spray drying of skim milk mixed with milk permeate: effect on drying behavior, physicochemical properties, and storage stability of powder. Dry Technol 26(2):239–247. https://doi.org/10.1080/07373930701831663

    Article  CAS  Google Scholar 

  55. Patel KC, Chen XD (2008) Sensitivity analysis of the reaction engineering approach to modeling spray drying of whey proteins concentrate. Dry Technol 26(11):1334–1343. https://doi.org/10.1080/07373930802331019

    Article  CAS  Google Scholar 

  56. Frascareli EC, Silva VM, Tonon RV, Hubinger MD (2012) Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food Bioprod Process 90(3):413–424. https://doi.org/10.1016/j.fbp.2011.12.002

    Article  CAS  Google Scholar 

  57. Taylor P et al (2011). Dry Technol. https://doi.org/10.1080/07373937.2011.589552

    Article  Google Scholar 

  58. German B (1999) Food processing and lipid oxidation 1. Impact Process Food Saf 459:23–24

    Article  CAS  Google Scholar 

  59. Frankel EN, Regional N (1984) Lipid oxidation: mechanisms, products and biological significance. J Am Oil Chem Soc 61(12):1908–1917

    Article  CAS  Google Scholar 

  60. Kubow S, Ph D (1993) Lipid oxidation products in food and atherogenesis. Nutr Rev 51(February):33–40

    CAS  PubMed  Google Scholar 

  61. Linke A, Linke T, Hinrichs J, Kohlus R (2019) Factors determining the surface oil concentration of encapsulated lipid particles—impact of the spray drying conditions. Dry Technol. https://doi.org/10.1080/07373937.2019.1648287

    Article  Google Scholar 

  62. Chinachoti P (1995) Carbohydrates: functionality in foods. Am J Clin Nutr 61(4):922S-929S

    Article  CAS  PubMed  Google Scholar 

  63. Sudharshan R, Ramachandra CT, Hiregoudar S, Nidoni U (2014) Influence of processing conditions on functional and reconstitution properties of milk powder made from Osmanabadi goat milk by spray drying. Small Rumin Res 119(1–3):130–137. https://doi.org/10.1016/j.smallrumres.2014.01.013

    Article  Google Scholar 

  64. Ismail BP (2017) Ash content determination. Food analysis laboratory manual. Springer International Publishing, Cham, pp 117–119

    Chapter  Google Scholar 

  65. Felfoul I et al (2020) Impact of spray-drying conditions on physicochemical properties and rehydration ability of skim dromedary and cow’s milk powders. Dry Technol. https://doi.org/10.1080/07373937.2020.1828448

    Article  Google Scholar 

  66. Deshwal GK, Singh AK, Kumar D, Sharma H (2020) Effect of spray and freeze drying on physico-chemical, functional, moisture sorption and morphological characteristics of camel milk powder. Lwt 134(August):110117. https://doi.org/10.1016/j.lwt.2020.110117

    Article  CAS  Google Scholar 

  67. Pereira DCDS, Beres C, dos Gomes FS, Tonon RV, Cabral LMC (2020) Spray drying of juçara pulp aiming to obtain a ‘pure’ powdered pulp without using carrier agents. Dry Technol 38(9):1175–1185. https://doi.org/10.1080/07373937.2019.1625363

    Article  CAS  Google Scholar 

  68. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):0–21. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  Google Scholar 

  69. Leong SY, Oey I (2012) Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem 133(4):1577–1587. https://doi.org/10.1016/j.foodchem.2012.02.052

    Article  CAS  Google Scholar 

  70. Ersus S, Yurdagel U (2007) Microencapsulation of anthocyanin pigments of black carrot (Daucuscarota L.) by spray drier. J Food Eng 80:805–812. https://doi.org/10.1016/j.jfoodeng.2006.07.009

    Article  CAS  Google Scholar 

  71. Paim DRSF, Costa SDO, Walter EHM, Tonon RV (2016) LWT—food science and technology microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT Food Sci Technol 74:21–25. https://doi.org/10.1016/j.lwt.2016.07.022

    Article  CAS  Google Scholar 

  72. Eldridge JA, Repko D, Mumper RJ (2014) Retention of polyphenolic species in spray-dried blackberry extract using mannitol as a thermoprotectant. J Med Food 17(10):1064–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Clinton SK, Ph D (1998) Lycopene : chemistry, biology, and implications for human health and disease. Nutr Rev 56(2):35–51

    Article  CAS  PubMed  Google Scholar 

  74. Lee MT, Chen BH (2002) Stability of lycopene during heating and illumination in a model system. Food Chem 78:425–432

    Article  CAS  Google Scholar 

  75. Goula AM, Adamopoulos KG (2005) Stability of lycopene during spray drying of tomato pulp. LWT J Food Sci Technol 38:479–487. https://doi.org/10.1016/j.lwt.2004.07.020

    Article  CAS  Google Scholar 

  76. Varvara M, Bozzo G, Celano G, Disanto C, Pagliarone CN, Celano GV (2016) The use of ascorbic acid as a food additive : technical-legal issues. Ital J Food Saf. https://doi.org/10.4081/ijfs.2016.4313

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fenech M, Amaya I, Valpuesta V, Botella MA (2018) Vitamin C content in fruits : biosynthesis and regulation. Front Plant Sci. https://doi.org/10.3389/fpls.2018.02006

    Article  PubMed  Google Scholar 

  78. Urbán A, Zaremba M, Malý M, Józsa V, Jedelský J (2017) Droplet dynamics and size characterization of high-velocity airblast atomization. Int J Multiph Flow 95:1–11. https://doi.org/10.1016/j.ijmultiphaseflow.2017.02.001

    Article  CAS  Google Scholar 

  79. Amiri-Rigi A, Emam-Djomeh Z, Mohammadifar MA, Mohammadi M (2012) Spray drying of low-phenylalanine skim milk: optimisation of process conditions for improving solubility and particle size. Int J Food Sci Technol 47(3):495–503. https://doi.org/10.1111/j.1365-2621.2011.02869.x

    Article  CAS  Google Scholar 

  80. Naik A, Venu GV, Prakash M, Raghavarao KSMS (2014) Dehydration of coconut skim milk and evaluation of functional properties. CYTA J Food 12(3):227–234. https://doi.org/10.1080/19476337.2013.833296

    Article  CAS  Google Scholar 

  81. Zouari A, Lajnaf R, Lopez C, Schuck P, Attia H, Ayadi MA (2021) Physicochemical, techno-functional, and fat melting properties of spray-dried camel and bovine milk powders. J Food Sci 86(1):103–111. https://doi.org/10.1111/1750-3841.15550

    Article  CAS  PubMed  Google Scholar 

  82. Çalışkan G, Safiye K, Dirim N (2018) Spray dried spinach juice : powder properties. J Food Meas Charact 12(3):1654–1668. https://doi.org/10.1007/s11694-018-9781-9

    Article  Google Scholar 

  83. Santhalakshmy S, Don Bosco SJ, Francis S, Sabeena M (2015) Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol 274:37–43. https://doi.org/10.1016/j.powtec.2015.01.016

    Article  CAS  Google Scholar 

  84. Bhusari SN, Muzaffar K, Kumar P (2014) Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol. https://doi.org/10.1016/j.powtec.2014.06.038

    Article  Google Scholar 

  85. Sobulska M, Zbicinski I (2020) Advances in spray drying of sugar-rich products. Dry Technol. https://doi.org/10.1080/07373937.2020.1832513

    Article  Google Scholar 

  86. Tkacz K, Wojdyło A, Michalska-Ciechanowska A, Turkiewicz IP, Lech K, Nowicka P (2020) Influence carrier agents, drying methods, storage time on physico-chemical properties and bioactive potential of encapsulated sea buckthorn juice powders. Molecules. https://doi.org/10.3390/molecules25173801

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ferrari CC, Germer SPM, Alvim ID, Vissotto FZ, de Aguirre JM (2012) Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. Int J Food Sci Technol 47(6):1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.x

    Article  CAS  Google Scholar 

  88. Chegini GR, Ghobadian B (2005) Effect of spray-drying conditions on physical properties of orange juice powder. Dry Technol 23(3):657–668. https://doi.org/10.1081/DRT-200054161

    Article  CAS  Google Scholar 

  89. I. C. Journal (2020) Decentralized coconut nursery coconut water. 7:1–40

  90. Bhandari BR, Datta N, Howes T (1997) Problems associated with spray drying of sugar-rich foods. Dry Technol 15(2):671–684. https://doi.org/10.1080/07373939708917253

    Article  CAS  Google Scholar 

  91. Gong Z, Zhang M, Mujumdar A, Sun J (2008) Spray drying and agglomeration of instant bayberry powder. Dry Technol 26(1):116–121. https://doi.org/10.1080/07373930701781751

    Article  CAS  Google Scholar 

  92. Can Karaca A, Guzel O, Ak MM (2016) Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. J Sci Food Agric 96(2):449–455. https://doi.org/10.1002/jsfa.7110

    Article  PubMed  Google Scholar 

  93. Samborska K et al (2020) Reformulation of spray-dried apple concentrate and honey for the enhancement of drying process performance and the physicochemical properties of powders. J Sci Food Agric 100(5):2224–2235. https://doi.org/10.1002/jsfa.10247

    Article  CAS  PubMed  Google Scholar 

  94. Quintero SM, Lu A, Oliveira CAF, Fonseca CR, Bento MSG (2011) Original article Physical properties of goat milk powder with soy lecithin added before spray drying. Int J Food Sci Technol. https://doi.org/10.1111/j.1365-2621.2010.02527.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdullah.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, S., Thomas, A., Kumar, M.V.P. et al. Impact of processing parameters on the quality attributes of spray-dried powders: a review. Eur Food Res Technol 249, 241–257 (2023). https://doi.org/10.1007/s00217-022-04170-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04170-0

Keywords

Navigation