Log in

Miniature mass spectrometer–based point-of-care assay for cabotegravir and rilpivirine in whole blood

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

HIV prevention and treatment with injectable cabotegravir and/or rilpivirine administered once every 4 to 8 weeks is an attractive alternative to daily therapy. Prescribed dosage and drug concentrations in plasma are based on patient data collected in clinical trials, but actual patients are expected to exhibit more variability in drug concentrations, which is important to quantify. Here, we demonstrate the first quantitative point-of-care assay with a miniature mass spectrometer to assess these drug concentrations in whole blood. Quantitative performance is obtained using paper spray ionization in combination with tandem mass spectrometry (MS/MS) in the clinically relevant concentration range of both drugs. Limits of quantitation (LoQs) of cabotegravir and rilpivirine are measured to be 750 ng/mL and 20 ng/mL, respectively. The assay turnaround time is < 4 min, and strong linear relationships are established between MS/MS responses and concentration, with percentage of relative standard deviations (RSDs) that are <15% at concentrations above the LoQs. The speed, portability, low power consumption, and specificity offered by the miniature instrument should make it an appropriate platform for measuring drug concentrations in a walk-in clinic using small volumes of patient blood.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UNAIDS Global HIV & AIDS statistics — Fact sheet | UNAIDS. In: UNAIDS 2021 Epidemiol. Estim. 2021. https://www.unaids.org/en/resources/fact-sheet. Accessed 23 Sept 2021

  2. Paterson DL, Swindells S, Mohr J, Brester M, Vergis EN, Squier C, Wagener MM, Singh N, Hudson B. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med. 2000;133:21–30. https://doi.org/10.7326/0003-4819-133-1-200007040-00004.

    Article  CAS  PubMed  Google Scholar 

  3. Lima VD, Harrigan R, Bangsberg DR, Hogg RS, Gross R, Yip B, Montaner JSG. The combined effect of modern highly active antiretroviral therapy regimens and adherence on mortality over time. J Acquir Immune Defic Syndr. 2009;50:529–36. https://doi.org/10.1097/QAI.0b013e31819675e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ickovics JR, Cameron A, Zackin R, Basset R, Chesney M, Johnson VA, Kuritzkes DR. Consequences and determinants of adherence to antiretroviral medication: results from Adult AIDS Clinical Trials Group protocol 370. Antivir Ther. 2002;7:185–93. https://doi.org/10.1177/135965350200700308.

    Article  PubMed  Google Scholar 

  5. U.S. Food & drug administration FDA Approves Cabenuva and Vocabria for the treatment of HIV-1 infection. 2021. https://www.fda.gov/drugs/human-immunodeficiency-virus-hiv/fda-approves-cabenuva-and-vocabria-treatment-hiv-1-infection. Accessed 29 Sept 2021.

  6. National Institute of Allergy and Infectious Diseases The LATITUDE Study: long-acting therapy to improve treatment success in daily life. In: ClinicalTrials.gov. 2019. https://clinicaltrials.gov/ct2/show/NCT03635788?term=NCT03635788&rank=1. Accessed 22 Nov 2021

  7. Swindells S, Andrade-Villanueva J-F, Richmond GJ, Rizzardini G, Baumgarten A, Masiá M, Latiff G, Pokrovsky V, Bredeek F, Smith G, Cahn P, Kim Y-S, Ford SL, Talarico CL, Patel P, Chounta V, Crauwels H, Parys W, Vanveggel S, Mrus J, Huang J, Harrington CM, Hudson KJ, Margolis DA, Smith KY, Williams PE, Spreen WR. Long-acting cabotegravir and rilpivirine for maintenance of HIV-1 suppression. N Engl J Med. 2020;382:1112–23. https://doi.org/10.1056/nejmoa1904398.

    Article  CAS  PubMed  Google Scholar 

  8. Orkin C, Arasteh K, Górgolas Hernández-Mora M, Pokrovsky V, Overton ET, Girard P-M, Oka S, Walmsley S, Bettacchi C, Brinson C, Philibert P, Lombaard J, St. Clair M, Crauwels H, Ford SL, Patel P, Chounta V, D’Amico R, Vanveggel S, Dorey D, Cutrell A, Griffith S, Margolis DA, Williams PE, Parys W, Smith KY, Spreen WR. Long-acting cabotegravir and rilpivirine after oral induction for HIV-1 infection. N Engl J Med. 2020;382:1124–1135. https://doi.org/10.1056/nejmoa1909512

  9. Margolis DA, Gonzalez-Garcia J, Stellbrink H-J, Eron JJ, Yazdanpanah Y, Podzamczer D, Lutz T, Angel JB, Richmond GJ, Clotet B, Gutierrez F, Sloan L, Clair MS, Murray M, Ford SL, Mrus J, Patel P, Crauwels H, Griffith SK, Sutton KC, Dorey D, Smith KY, Williams PE, Spreen WR. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet. 2017;390:1499–510. https://doi.org/10.1016/S0140-6736(17)31917-7.

    Article  CAS  PubMed  Google Scholar 

  10. Scarsi KK, Swindells S. The promise of improved adherence with long-acting antiretroviral therapy: what are the data? J Int Assoc Provid AIDS Care. 2021;20:1–10. https://doi.org/10.1177/23259582211009011.

    Article  Google Scholar 

  11. Jani IV, Peter TF. How point-of-care testing could drive innovation in global health. N Engl J Med. 2013;368:2319–24. https://doi.org/10.1056/nejmsb1214197.

    Article  CAS  PubMed  Google Scholar 

  12. John AS, Price CP. Existing and emerging technologies for point-of-care testing. Clin Biochem Rev. 2014;35:155–67.

    Google Scholar 

  13. Hoofnagle AN, Wener MH. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods. 2009;347:3–11. https://doi.org/10.1016/j.jim.2009.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graham Cooks R, Ouyang Z, Takats Z, Wiseman JM. Ambient mass spectrometry. Mass Spectrom. 2006;311:1566–70. https://doi.org/10.1007/978-3-642-10711-5_13.

    Article  Google Scholar 

  15. Ma X, Ouyang Z. Ambient ionization and miniature mass spectrometry system for chemical and biological analysis. TrAC - Trends Anal Chem. 2016;85:10–9. https://doi.org/10.1016/j.trac.2016.04.009.

    Article  CAS  Google Scholar 

  16. Feider CL, Krieger A, Dehoog RJ, Eberlin LS. Ambient ionization mass spectrometry: recent developments and applications. Anal Chem. 2019;91:4266–90. https://doi.org/10.1021/acs.analchem.9b00807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306:471–3. https://doi.org/10.1126/science.1104404.

    Article  CAS  PubMed  Google Scholar 

  18. Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302. https://doi.org/10.1021/ac050162j.

    Article  CAS  PubMed  Google Scholar 

  19. Su Y, Wang H, Liu J, Wei P, Cooks RG, Ouyang Z. Quantitative paper spray mass spectrometry analysis of drugs of abuse. Analyst. 2013;138:4443–7. https://doi.org/10.1039/c3an00934c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manicke NE, Abu-Rabie P, Spooner N, Ouyang Z, Cooks RG. Quantitative analysis of therapeutic drugs in dried blood spot samples by paper spray mass spectrometry: an avenue to therapeutic drug monitoring. J Am Soc Mass Spectrom. 2011;22:1501–7. https://doi.org/10.1007/s13361-011-0177-x.

    Article  CAS  PubMed  Google Scholar 

  21. Gómez-Ríos GA, Pawliszyn J. Development of coated blade spray ionization mass spectrometry for the quantitation of target analytes present in complex matrices. Angew Chemie. 2014;126:14731–5. https://doi.org/10.1002/ange.201407057.

    Article  Google Scholar 

  22. Ren Y, McLuckey MN, Liu J, Ouyang Z. Direct mass spectrometry analysis of biofluid samples using slug-flow microextraction nano-electrospray ionization. Angew Chemie - Int Ed. 2014;53:14124–7. https://doi.org/10.1002/anie.201408338.

    Article  CAS  Google Scholar 

  23. Manicke NE, Yang Q, Wang H, Oradu S, Ouyang Z, Cooks RG. Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots. Int J Mass Spectrom. 2011;300:123–9. https://doi.org/10.1016/j.ijms.2010.06.037.

    Article  CAS  Google Scholar 

  24. Espy RD, Teunissen SF, Manicke NE, Ren Y, Ouyang Z, Van Asten A, Cooks RG. Paper spray and extraction spray mass spectrometry for the direct and simultaneous quantification of eight drugs of abuse in whole blood. Anal Chem. 86:7712–7718. https://doi.org/10.1021/ac5016408

  25. Yannell KE, Kesely KR, Chien HD, Kissinger CB, Cooks RG. Comparison of paper spray mass spectrometry analysis of dried blood spots from devices used for in-field collection of clinical samples. Anal Bioanal Chem. 2017;409:121–31. https://doi.org/10.1007/s00216-016-9954-5.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Z, Xu W, Manicke NE, Cooks RG, Ouyang Z. Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots. Anal Chem. 2012;84:931–8. https://doi.org/10.1021/ac202058w.

    Article  CAS  PubMed  Google Scholar 

  27. Song X, Chen H, Zare RN. Conductive polymer spray ionization mass spectrometry for biofluid analysis. Anal Chem. 2018;90:12878–85. https://doi.org/10.1021/acs.analchem.8b03460.

    Article  CAS  PubMed  Google Scholar 

  28. Mendes TPP, Pereira I, Ferreira MR, Chaves AR, Vaz BG. Molecularly imprinted polymer-coated paper as a substrate for highly sensitive analysis using paper spray mass spectrometry: quantification of metabolites in urine. Anal Methods. 2017;9:6117–23. https://doi.org/10.1039/c7ay01648d.

    Article  CAS  Google Scholar 

  29. Damon DE, Davis KM, Moreira CR, Capone P, Cruttenden R, Badu-Tawiah AK. Direct biofluid analysis using hydrophobic paper spray mass spectrometry. Anal Chem. 2016;88:1878–84. https://doi.org/10.1021/acs.analchem.5b04278.

    Article  CAS  PubMed  Google Scholar 

  30. Basuri P, Baidya A, Pradeep T. Sub-Parts-per-Trillion level detection of analytes by superhydrophobic preconcentration paper spray ionization mass spectrometry (SHPPSI MS). Anal Chem. 2019;91:7118–24. https://doi.org/10.1021/acs.analchem.9b00144.

    Article  CAS  PubMed  Google Scholar 

  31. Fatigante WL, Mukta S, Lawton ZE, Bruno AM, Traub A, Gasa AJ, Stelmack AR, Wilson-Frank CR, Mulligan CC. Filter cone spray ionization coupled to a portable MS system: application to on-site forensic evidence and environmental sample analysis. J Am Soc Mass Spectrom. 2020;31:336–46. https://doi.org/10.1021/jasms.9b00098.

    Article  CAS  PubMed  Google Scholar 

  32. Brown HM, McDaniel TJ, Doppalapudi KR, Mulligan CC, Fedick PW. Rapid, In situ detection of chemical warfare agent simulants and hydrolysis products in bulk soils by low-cost 3D-printed cone spray ionization mass spectrometry. Analyst. 2021;146:3127–36. https://doi.org/10.1039/d1an00255d.

    Article  CAS  PubMed  Google Scholar 

  33. Ouyang Z, Cooks RG. Miniature mass spectrometers. Annu Rev Anal Chem. 2009;2:187–214. https://doi.org/10.1146/annurev-anchem-060908-155229.

    Article  CAS  Google Scholar 

  34. Snyder DT, Pulliam CJ, Ouyang Z, Cooks RG. Miniature and fieldable mass spectrometers: recent advances. Anal Chem. 2016;88:2–29. https://doi.org/10.1021/acs.analchem.5b03070.

    Article  CAS  PubMed  Google Scholar 

  35. Pu F, Zhang W, Bateman KP, Liu Y, Helmy R, Ouyang Z. Using miniature MS system with automatic blood sampler for preclinical pharmacokinetics study. Bioanalysis. 2017;9:1633–41. https://doi.org/10.4155/bio-2017-0160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown HM, Pu F, Dey M, Miller J, Shah MV, Shapiro SA, Ouyang Z, Cohen-gadol AA, Cooks RG. Intraoperative detection of isocitrate dehydrogenase mutations in human gliomas using a miniature mass spectrometer. Anal Bioanal Chem. 2019;411:7929–33. https://doi.org/10.1007/s00216-019-02198-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szalwinski LJ, Hu Y, Morato NM, Cooks RG, Salentijn GIJ. Novel ion trap scan modes to develop criteria for on-site detection of sulfonamide antibiotics. Anal Chem. 2021;93:13904–11. https://doi.org/10.1021/acs.analchem.1c02790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li L, Chen TC, Ren Y, Hendricks PI, Cooks RG, Ouyang Z. Mini-12, miniature mass spectrometer for clinical and other applications - introduction and characterization. Anal Chem. 2014;86:2909–16. https://doi.org/10.1021/ac403766c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao L, Cooks RG, Ouyang Z. Breaking the pum** speed barrier in mass spectrometry: discontinuous atmospheric pressure interface. Anal Chem. 2008;80:4026–32. https://doi.org/10.1021/ac800014v.

    Article  CAS  PubMed  Google Scholar 

  40. Shi RZ, El Gierari ETM, Manicke NE, Faix JD. Rapid measurement of tacrolimus in whole blood by paper spray-tandem mass spectrometry (PS-MS/MS). Clin Chim Acta. 2015;441:99–104. https://doi.org/10.1016/j.cca.2014.12.022.

    Article  CAS  PubMed  Google Scholar 

  41. Espy RD, Manicke NE, Ouyang Z, Cooks RG. Rapid analysis of whole blood by paper spray mass spectrometry for point-of-care therapeutic drug monitoring. Analyst. 2012;137:2344–9. https://doi.org/10.1039/c2an35082c.

    Article  CAS  PubMed  Google Scholar 

  42. Aouri M, Calmy A, Hirschel B, Telenti A, Buclin T, Cavassini M, Rauch A, Decosterd LA. A validated assay by liquid chromatography-tandem mass spectrometry for the simultaneous quantification of elvitegravir and rilpivirine in HIV positive patients. J Mass Spectrom. 2013;48:616–25. https://doi.org/10.1002/jms.3200.

    Article  CAS  PubMed  Google Scholar 

  43. Courlet P, Alves Saldanha S, Cavassini M, Marzolini C, Choong E, Csajka C, Günthard HF, André P, Buclin T, Desfontaine V, Decosterd LA. Development and validation of a multiplex UHPLC-MS/MS assay with stable isotopic internal standards for the monitoring of the plasma concentrations of the antiretroviral drugs bictegravir, cabotegravir, doravirine, and rilpivirine in people living with HIV. J Mass Spectrom. 2018;55: e4506. https://doi.org/10.1002/jms.4506.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mark Carlsen of the Jonathan Amy Facility for Chemical Instrumentation for electronics support. The authors also thank Lucas J. Szalwinski and Robert L. Schrader for assistance with instrumentation.

Funding

We acknowledge funding to P.L.A. from the National Institute of Health under the award number R01AI122298. The authors also acknowledge support from Teledyne FLIR under FLIR Basic Research Award #18057244.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter L. Anderson or R. Graham Cooks.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Hu, Y., Bushman, L.R. et al. Miniature mass spectrometer–based point-of-care assay for cabotegravir and rilpivirine in whole blood. Anal Bioanal Chem 414, 3387–3395 (2022). https://doi.org/10.1007/s00216-022-03954-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03954-3

Keywords

Navigation