Log in

Peptide nanotube functionalized molecularly imprinted polydopamine based single-use sensor for impedimetric detection of malathion

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present study, a peptide nanotube functionalized polydopamine (p-Dop) based molecularly imprinted (MIP) sensor system was constructed, characterized, and studied for the impedimetric sensing of an organophosphorus pesticide, malathion (MLT). Electropolymerization in the presence of a template (MLT) was utilized as a convenient and effective strategy to generate imprinted p-Dop films on peptide nanotubes (PNTs) modified graphite electrodes (PGEs). Upon the removal of template, the adsorption of MLT on the specific cavities formed in the MIP film was tracked using electrochemical impedance spectroscopy (EIS). To attain optimal sensor response, experimental conditions, such as film thickness, analyte/functional monomer ratio, and desorption/adsorption time, were analyzed. The obtained MIP(p-Dop)-PNT-PGE sensor exhibited high sensitivity for electrochemical MLT analysis with a wide dynamic detection range of 13 pg mL−1 – 1.3 µg mL−1 and a LOD of 1.39 pg mL−1. The combination of a bio-inspired p-Dop-based MIP with the EIS technique allowed excellent sensitivity and selectivity toward MLT sensing which also yielded high recoveries in real samples. The success of this research strategy in real samples revealed its potential for various future environmental applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rebelo P, Costa-Rama E, Seguro I, Pacheco JG, Nouws HPA, Cordeiro MNDS, Delerue-Matos C. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens Bioelectron. 2021;172:112719.

    Article  CAS  Google Scholar 

  2. Liu H, Liu Z, Yi J, Ma D, **a F, Tian D, Zhou C. A dual-signal electroluminescence aptasensor based on hollow Cu/Co-MOF-luminol and g-C3N4 for simultaneous detection of acetamiprid and malathion. Sensors Actuators B Chem. 2021;331:129412. https://doi.org/10.1016/j.snb.2020.129412.

    Article  CAS  Google Scholar 

  3. Xu G, Huo D, Hou J, Zhang C, Zhao Y, Hou C, Bao J, Yao X, Yang M. An electrochemical aptasensor of malathion based on ferrocene/DNA-hybridized MOF, DNA coupling-gold nanoparticles and competitive DNA strand reaction. Microchem J. 2021;162:105829. https://doi.org/10.1016/j.microc.2020.105829.

    Article  CAS  Google Scholar 

  4. Kaur N, Thakur H, Prabhakar N. Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem J. 2019;147:393–402. https://doi.org/10.1016/j.microc.2019.03.042.

    Article  CAS  Google Scholar 

  5. **ao Z, He M, Chen B, Hu B. Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. Talanta. 2016;156–157:126–33. https://doi.org/10.1016/j.talanta.2016.05.001.

    Article  CAS  PubMed  Google Scholar 

  6. Albuquerque CDL, Poppi RJ. Detection of malathion in food peels by surface-enhanced Raman imaging spectroscopy and multivariate curve resolution. Anal Chim Acta. 2015;879:24–33. https://doi.org/10.1016/j.aca.2015.04.019.

    Article  CAS  PubMed  Google Scholar 

  7. Tang T, Deng J, Zhang M, Shi G, Zhou T. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides. Talanta. 2016;146:55–61. https://doi.org/10.1016/j.talanta.2015.08.023.

    Article  CAS  PubMed  Google Scholar 

  8. Yao J, Wang Z, Guo L, Xu X, Liu L, Xu L, Song S, Xu C, Kuang H. Advances in immunoassays for organophosphorus and pyrethroid pesticides. TrAC Trends Anal Chem. 2020;131:116022. https://doi.org/10.1016/j.trac.2020.116022.

    Article  CAS  Google Scholar 

  9. Chen H, Hu O, Fan Y, Xu L, Zhang L, Lan W, Hu Y, **e X, Ma L, She Y, Fu H. Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP. Food Chem. 2020;327. https://doi.org/10.1016/j.foodchem.2020.127075

  10. Xu G, Hou J, Zhao Y, Bao J, Yang M, Fa H, Yang Y, Li L, Huo D, Hou C. Dual-signal aptamer sensor based on polydopamine-gold nanoparticles and exonuclease I for ultrasensitive malathion detection. Sensors Actuators B Chem. 2019;287:428–36. https://doi.org/10.1016/j.snb.2019.01.113.

    Article  CAS  Google Scholar 

  11. Guler M, Turkoglu V, Kivrak A. Electrochemical detection of malathion pesticide using acetylcholinesterase biosensor based on glassy carbon electrode modified with conducting polymer film. Environ Sci Pollut Res. 2016;23:12343–51. https://doi.org/10.1007/s11356-016-6385-y.

    Article  CAS  Google Scholar 

  12. Rhouati A, Majdinasab M, Hayat A. A perspective on non-enzymatic electrochemical nanosensors for direct detection of pesticides. Curr Opin Electrochem. 2018;11:12–8. https://doi.org/10.1016/j.coelec.2018.06.013.

    Article  CAS  Google Scholar 

  13. **e Y, Yu Y, Lu L, Ma X, Gong L, Huang X, Liu G, Yu Y. CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J Electroanal Chem. 2018;812:82–9. https://doi.org/10.1016/j.jelechem.2018.01.043.

    Article  CAS  Google Scholar 

  14. Wang W, Wang X, Cheng N, Luo Y, Lin Y, Xu W, Du D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC Trends Anal Chem. 2020;132:116041. https://doi.org/10.1016/j.trac.2020.116041.

    Article  CAS  Google Scholar 

  15. Belbruno JJ. Molecularly ımprinted polymers. Chem Rev. 2019;119:94–119.

    Article  CAS  Google Scholar 

  16. Jia M, Zhang Z, Li J, Ma X, Chen L, Yang X. Molecular imprinting technology for microorganism analysis. TrAC Trends Anal Chem. 2018;106:190–201. https://doi.org/10.1016/j.trac.2018.07.011.

    Article  CAS  Google Scholar 

  17. Jesadabundit W, Jampasa S, Patarakul K, Siangproh W, Chailapakul O. Enzyme-free impedimetric biosensor-based molecularly imprinted polymer for selective determination of L-hydroxyproline. Biosens Bioelectron. 2021;191:113387. https://doi.org/10.1016/j.bios.2021.113387.

    Article  CAS  PubMed  Google Scholar 

  18. Aghoutane Y, Diouf A, Österlund L, Bouchikhi B, El Bari N. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry. 2020;132:107404. https://doi.org/10.1016/j.bioelechem.2019.107404.

    Article  CAS  PubMed  Google Scholar 

  19. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30. https://doi.org/10.1126/science.1147241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang J, Zhu L, Zhu L, Zhu B, Xu Y. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir. 2011;27:14180–7. https://doi.org/10.1021/la202877k.

    Article  CAS  PubMed  Google Scholar 

  21. He H, **e Q, Yao S. An electrochemical quartz crystal impedance study on anti-human immunoglobulin G immobilization in the polymer grown during dopamine oxidation at an Au electrode. J Colloid Interface Sci. 2005;289:446–54. https://doi.org/10.1016/j.jcis.2005.03.085.

    Article  CAS  PubMed  Google Scholar 

  22. Liu K, Wei WZ, Zeng JX, Liu XY, Gao YP. Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine. Anal Bioanal Chem. 2006;385:724–9. https://doi.org/10.1007/s00216-006-0489-z.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou WH, Tang SF, Yao QH, Chen FR, Yang HH, Wang XR. A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer. Biosens Bioelectron. 2010;26:585–9. https://doi.org/10.1016/j.bios.2010.07.024.

    Article  CAS  PubMed  Google Scholar 

  24. Yang B, Lv S, Chen F, Liu C, Cai C, Chen C, Chen X. A resonance light scattering sensor based on bioinspired molecularly imprinted polymers for selective detection of papain at trace levels. Anal Chim Acta. 2016;912:125–32. https://doi.org/10.1016/j.aca.2016.01.030.

    Article  CAS  PubMed  Google Scholar 

  25. Lan F, Ma S, Yang Q, **e L, Wu Y, Gu Z. Polydopamine-based superparamagnetic molecularly imprinted polymer nanospheres for efficient protein recognition. Colloids Surfaces B Biointerfaces. 2014;123:213–8. https://doi.org/10.1016/j.colsurfb.2014.09.018.

    Article  CAS  PubMed  Google Scholar 

  26. Miao J, Liu A, Wu L, Yu M, Wei W, Liu S. Magnetic ferroferric oxide and polydopamine molecularly imprinted polymer nanocomposites based electrochemical impedance sensor for the selective separation and sensitive determination of dichlorodiphenyltrichloroethane (DDT). Anal Chim Acta. 2020;1095:82–92. https://doi.org/10.1016/j.aca.2019.10.027.

    Article  CAS  PubMed  Google Scholar 

  27. Yang YY, Li YT, Li XJ, Zhang L, Kouadio Fodjo E, Han S. Controllable in situ fabrication of portable AuNP/mussel-inspired polydopamine molecularly imprinted SERS substrate for selective enrichment and recognition of phthalate plasticizers. Chem Eng J. 2020;402:125179. https://doi.org/10.1016/j.cej.2020.125179.

    Article  CAS  Google Scholar 

  28. Turco A, Corvaglia S, Mazzotta E, Pompa PP, Malitesta C. Preparation and characterization of molecularly imprinted mussel inspired film as antifouling and selective layer for electrochemical detection of sulfamethoxazole. Sensors Actuators B Chem. 2018;255:3374–83. https://doi.org/10.1016/j.snb.2017.09.164.

    Article  CAS  Google Scholar 

  29. Yin ZZ, Cheng SW, Bin XuL, Liu HY, Huang K, Li L, Zhai YY, Zeng YB, Liu HQ, Shao Y, Zhang ZL, Lu YX. Highly sensitive and selective sensor for sunset yellow based on molecularly imprinted polydopamine-coated multi-walled carbon nanotubes. Biosens Bioelectron. 2018;100:565–70. https://doi.org/10.1016/j.bios.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  30. Radi AE, Eissa A, Wahdan T. Impedimetric sensor for deoxynivalenol based on electropolymerised molecularly imprinted polymer on the surface of screen-printed gold electrode. Int J Environ Anal Chem. 2019;00:1–12. https://doi.org/10.1080/03067319.2019.1699548.

    Article  CAS  Google Scholar 

  31. Shamsipur M, Moradi N, Pashabadi A. Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: a highly sensitive impedimetric melamine sensor. J Solid State Electrochem. 2018;22:169–80. https://doi.org/10.1007/s10008-017-3731-z.

    Article  CAS  Google Scholar 

  32. Bolat G, Yaman YT, Abaci S. Molecularly imprinted electrochemical impedance sensor for sensitive dibutyl phthalate (DBP) determination. Sensors Actuators B Chem. 2019;299:127000. https://doi.org/10.1016/j.snb.2019.127000.

    Article  CAS  Google Scholar 

  33. Karami P, Bagheri H, Johari-Ahar M, Khoshsafar H, Arduini F, Afkhami A. Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta. 2019;202:111–22. https://doi.org/10.1016/j.talanta.2019.04.061.

    Article  CAS  PubMed  Google Scholar 

  34. Yaman YT, Bolat G, Saygin TB, Abaci S. Molecularly imprinted label-free sensor platform for impedimetric detection of 3-monochloropropane-1,2˗diol. Sensors Actuators B Chem. 2021;328:128986. https://doi.org/10.1016/j.snb.2020.128986.

    Article  CAS  Google Scholar 

  35. Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science. 2003;300:625 LP – 627.

    Article  Google Scholar 

  36. Sedman VL, Adler-Abramovich L, Allen S, Gazit E, Tendler SJB. Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J Am Chem Soc. 2006;128:6903–8. https://doi.org/10.1021/ja060358g.

    Article  CAS  PubMed  Google Scholar 

  37. Adler-abramovich L, Reches M, Sedman VL, Allen S, Tendler SJB, Gazit E, Uni T, Ng N. Thermal and chemical stability of diphenylalanine peptide nanotubes : ımplications for nanotechnological applications. Langmuir. 2006;22:1313–20. https://doi.org/10.1021/la052409d.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao L, Zou Q, Yan X. Self-assembling peptide-based nanoarchitectonics. Bull Chem Soc Jpn. 2019;92:70–9. https://doi.org/10.1246/bcsj.20180248.

    Article  CAS  Google Scholar 

  39. Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem. 2020;4:615–34. https://doi.org/10.1038/s41570-020-0215-y.

    Article  CAS  Google Scholar 

  40. Yuan C, Ji W, **ng R, Li J, Gazit E, Yan X. Hierarchically oriented organization in supramolecular peptide crystals. Nat Rev Chem. 2019;3:567–88. https://doi.org/10.1038/s41570-019-0129-8.

    Article  CAS  Google Scholar 

  41. Yemini M, Reches M, Gazit E, Rishpon J. Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal Chem. 2005;77:5155–9. https://doi.org/10.1021/ac050414g.

    Article  CAS  PubMed  Google Scholar 

  42. Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J. Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. Small. 2010;6:825–31. https://doi.org/10.1002/smll.200902186.

    Article  CAS  PubMed  Google Scholar 

  43. De La Rica R, Mendoza E, Lechuga LM, Matsui H. Label-free pathogen detection with sensor chips assembled from peptide nanotubes. Angew Chem Int Ed. 2008;47:9752–5. https://doi.org/10.1002/anie.200804299.

    Article  CAS  Google Scholar 

  44. Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martínez F, Castillo-León J. Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst. 2013;138:1026–31. https://doi.org/10.1039/c2an36121c.

    Article  CAS  PubMed  Google Scholar 

  45. Bolat G, Abaci S, Vural T, Bozdogan B, Denkbas EB. Sensitive electrochemical detection of fenitrothion pesticide based on self-assembled peptide-nanotubes modified disposable pencil graphite electrode. J Electroanal Chem. 2018;809:88–95. https://doi.org/10.1016/j.jelechem.2017.12.060.

    Article  CAS  Google Scholar 

  46. Leibl N, Duma L, Gonzato C, Haupt K. Polydopamine-based molecularly imprinted thin films for electro-chemical sensing of nitro-explosives in aqueous solutions. Bioelectrochemistry. 2020;135:107541. https://doi.org/10.1016/j.bioelechem.2020.107541.

    Article  CAS  PubMed  Google Scholar 

  47. Stöckle B, Ng DYW, Meier C, Paust T, Bischoff F, Diemant T, Behm RJ, Gottschalk KE, Ziener U, Weil T. Precise control of polydopamine film formation by electropolymerization. Macromol Symp. 2014;346:73–81. https://doi.org/10.1002/masy.201400130.

    Article  CAS  Google Scholar 

  48. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW. Perspectives on poly(dopamine). Chem Sci. 2013;4:3796–802. https://doi.org/10.1039/c3sc51501j.

    Article  CAS  Google Scholar 

  49. Ding YH, Floren M, Tan W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurface Biotribol. 2016;2:121–36. https://doi.org/10.1016/j.bsbt.2016.11.001.

    Article  CAS  Google Scholar 

  50. Yemini M, Reches M, Gazit E, Rishpon J, Aviv T. Peptide nanotube-modified electrodes for enzyme - biosensor applications. Anal Chem. 2005;77:5155–9.

    Article  CAS  Google Scholar 

  51. Chan E, Choi J, Lee M, Koo K. Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes. Colloids Surf A Physicochem Eng Asp. 2008;314:95–9. https://doi.org/10.1016/j.colsurfa.2007.04.154.

    Article  CAS  Google Scholar 

  52. Yemini M, Reches M, Rishpon J, Gazit E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 2005;5:183–6.

    Article  CAS  Google Scholar 

  53. Laureana L, Pompa PP, Maruccio G, Della TA, Sabella S, Tamburro AM, Cingolani R, Rinaldi R. Charge transport and intrinsic fluorescence in amyloid-like fibrils. PNAS. 2007;104:18019–24.

    Article  Google Scholar 

  54. Ashkenasy N, Horne WS, Ghadiri MR. Design of self-assembling peptide nanotubes with delocalized electronic states**. Small. 2006;2:99–102. https://doi.org/10.1002/smll.200500252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Quintás G, Garrigues S, De GM. FT –Raman spectrometry determination of malathion in pesticide formulations. Talanta. 2004;63:345–50. https://doi.org/10.1016/j.talanta.2003.11.004.

    Article  CAS  PubMed  Google Scholar 

  56. Sharma AK, Tiwari U, Gaur MS, Tiwari RK. Assessment of malathion and its effects on leukocytes in human blood samples. J Biomed Res. 2016;30:52–9. https://doi.org/10.7555/JBR.30.20120073.

    Article  Google Scholar 

  57. Mirković MM, Pašti TDL, Došen AM, Čebela MŽ, Rosić AA, Matović BZ, Babić BM. Adsorption of malathion on mesoporous monetite obtained by mechanochemical treatment of brushite. RSC Adv. 2016;6:12219–25. https://doi.org/10.1039/C5RA27554G.

    Article  CAS  Google Scholar 

  58. Pandey GP, Singh AK, Deshmukh L, Prasad S, Paliwal LJ, Asthana A, Mathew SB. A novel and sensitive kinetic method for the determination of malathion using chromogenic reagent. Microchem J. 2014;113:83–9. https://doi.org/10.1016/j.microc.2013.11.005.

    Article  CAS  Google Scholar 

  59. Donia AM, Atia AA, Hussien RA, Rashad RT. Comparative study on the adsorption of malathion pesticide by different adsorbents from aqueous solution. Desalin Water Treat. 2012;47:300–9. https://doi.org/10.1080/19443994.2012.696419.

    Article  CAS  Google Scholar 

  60. Chatterjee S, Das SK, Chakravarty R, Chakrabarti A, Ghosh S, Guha AK. Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. J Hazard Mater. 2010;174:47–53. https://doi.org/10.1016/j.jhazmat.2009.09.014.

    Article  CAS  PubMed  Google Scholar 

  61. Hermosillo-nevárez JJ, Bustos-terrones V, Bustos-terrones YA, Uriarte-Aceves PM, Rangel-Peraza JG. Feasibility study on the use of recycled polymers for malathion adsorption: ısotherms and kinetic modeling. Materials (Basel). 2020;13:1824. https://doi.org/10.3390/ma13081824.

    Article  CAS  Google Scholar 

  62. Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano. 2018;12:8882–92. https://doi.org/10.1021/acsnano.8b04022.

    Article  CAS  PubMed  Google Scholar 

  63. Yu X, Fan H, Liu Y, Shi Z, ** Z. Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Langmuir. 2014;30:5497–505. https://doi.org/10.1021/la500225v.

    Article  CAS  PubMed  Google Scholar 

  64. Luo H, Gu C, Zheng W, Dai F, Wang X, Zheng Z. Facile synthesis of novel size-controlled antibacterial hybrid sphere with silver nanoparticles loaded to poly-dopamine sphere. RSC Adv. 2015;5:13470–7. https://doi.org/10.1039/b000000x.

    Article  Google Scholar 

  65. Tamanna T, Yu A. Polydopamine nanoparticle as a stable and capacious nano-reservoir of Rifampicin. Int J Pharmacol Pharm Sci. 2016;10:56–9. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  66. Bolat G, Abaci S. Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite. Sensors (Switzerland). 2018;18. https://doi.org/10.3390/s18030773.

  67. Liang AA, Hou BH, Tang CS, Sun DL, Luo EA. Bioelectrochemistry An advanced molecularly imprinted electrochemical sensor for the highly sensitive and selective detection and determination of Human IgG. Bioelectrochemistry. 2021;137:107671. https://doi.org/10.1016/j.bioelechem.2020.107671.

    Article  CAS  Google Scholar 

  68. Khumsap T, Bamrungsap S, Thu VT, Nguyen LT. Epitope-imprinted polydopamine electrochemical sensor for ovalbumin detection. Bioelectrochemistry. 2021;140:107805. https://doi.org/10.1016/j.bioelechem.2021.107805.

    Article  CAS  PubMed  Google Scholar 

  69. Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron. 2017;98:299–304. https://doi.org/10.1016/j.bios.2017.06.036.

    Article  CAS  PubMed  Google Scholar 

  70. Zuo HG, Zhu JX, Zhan CR, Shi L, **ng M, Guo P, Ding Y, Yang H. Preparation of malathion MIP-SPE and its application in environmental analysis. Environ Monit Assess. 2015;187. https://doi.org/10.1007/s10661-015-4641-0.

Download references

Funding

The authors received the financial support of this work under ID number FBA-2019–18385 by Research Council of Hacettepe University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Abaci.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaman, Y.T., Bolat, G., Abaci, S. et al. Peptide nanotube functionalized molecularly imprinted polydopamine based single-use sensor for impedimetric detection of malathion. Anal Bioanal Chem 414, 1115–1128 (2022). https://doi.org/10.1007/s00216-021-03737-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03737-2

Keywords

Navigation