Log in

A pH-responsive bioassay for sensitive colorimetric detection of adenosine triphosphate based on switchable DNA aptamer and metal ion–urease interactions

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A facile and economic colorimetric strategy was designed for ATP detection by rationally using urease, a pH-responsive molecule, and a metal-mediated switchable DNA probe. By utilizing metal ions as a modulator of urease activity, the concentration of ATP is translated into pH change, which can be readily visualized by naked eye. An unmodified single-stranded DNA probe was designed, which consists of a target binding sequence and two flanked cytosine (C)-rich sequences. This C-rich single-stranded DNA can form a hairpin structure triggered by Ag+ ions via C-Ag+-C base mismatch. Upon introduction of ATP, Ag+-coordinated hairpin DNA structure will be broken and release the included Ag+, thus inhibiting the activity of urease. Conversely, urease can hydrolyze urea and raise pH value of the solution, resulting in the color change of the sensing solution. The proposed assay allows determination of ATP as low as 1.6 nM and shows a satisfactory result in human serum. Because of simple operation and low cost of this method, we believe it has a potential in point-of-care (POC) testing in resource-limited areas.

Graphical abstract

Schematic illustration of pH-responsive colorimetric sensor for ATP detection based on switchable DNA aptamer and metal ion–urease interactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yokoshiki H, Sunagawa M, Seki T, Sperelakis N. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Phys. 1998;274(1):C25–37.

    Article  CAS  Google Scholar 

  2. Zhu S, Wang X, **g C, Yin Y, Zhou N. A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme. Microchim Acta. 2019;186(3):176.

    Article  Google Scholar 

  3. Ma X, Miao P. Silver nanoparticle@DNA tetrahedron-based colorimetric detection of HIV-related DNA with cascade strand displacement amplification. J Mater Chem B. 2019;7(16):2608–12.

    Article  CAS  Google Scholar 

  4. Ma X, Gao L, Tang Y, Miao P. Gold nanoparticles-based DNA logic gate for miRNA inputs analysis coupling strand displacement reaction and hybridization chain reaction. Part Part Syst Charact. 2017;35:1700326.

    Article  Google Scholar 

  5. Chen S-J, Huang Y-F, Huang C-C, Lee K-H, Lin Z-H, Chang H-T. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron. 2008;23(11):1749–53.

    Article  CAS  Google Scholar 

  6. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, et al. A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater. 2007;19(22):3943–6.

    Article  CAS  Google Scholar 

  7. Li Z, ** R, Mirkin CA, Letsinger RL. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res. 2002;30(7):1558–62.

    Article  CAS  Google Scholar 

  8. Liu F, Zhang J, Chen R, Chen L, Deng L. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chem Biodivers. 2011;8(2):311–6.

    Article  CAS  Google Scholar 

  9. Xu X, Nan D, Yang H, Pan S, Liu H, Hu X. Quercetin@ZIF-90 as a novel antioxidant for label-free colorimetric ATP sensing at neutral pH. Sens Actuators B Chem. 2020;304:127324.

    Article  CAS  Google Scholar 

  10. **ong Y, Zhang J, Yang Z, Mou Q, Ma Y, **ong Y, et al. Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J Am Chem Soc. 2020;142(1):207–13.

    Article  CAS  Google Scholar 

  11. Yang Y, Li C, Shi H, Chen T, Wang Z, Li G. A pH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta. 2019;192:325–30.

    Article  CAS  Google Scholar 

  12. Wang L, Chen C, Huang H, Huang D, Luo F, Qiu B, et al. Sensitive detection of telomerase activity in cancer cells using portable pH meter as readout. Biosens Bioelectron. 2018;121:153–8.

    Article  CAS  Google Scholar 

  13. Liu D, Wang Z, ** A, Huang X, Sun X, Wang F, et al. Acetylcholinesterase-catalyzed hydrolysis allows ultrasensitive detection of pathogens with the naked eye. Angew Chem Int Ed. 2013;52(52):14065–9.

    Article  CAS  Google Scholar 

  14. Tram K, Kanda P, Salena BJ, Huan S, Li Y. Translating bacterial detection by DNAzymes into a litmus test. Angew Chem Int Ed. 2014;53(47):12799–802.

    Article  CAS  Google Scholar 

  15. Ali MM, Wolfe M, Tram K, Gu J, Filipe CDM, Li Y, et al. A DNAzyme-based colorimetric paper sensor for helicobacter pylori. Angew Chem Int Ed. 2019;58(29):9907–11.

    Article  CAS  Google Scholar 

  16. Singh P, Kakkar S, Bharti, Kumar R, Bhalla V. Rapid and sensitive colorimetric detection of pathogens based on silver-urease interactions. Chem Commun. 2019;55(33):4765–8.

    Article  CAS  Google Scholar 

  17. He W, Luo L, Liu Q, Chen Z. Colorimetric sensor array for discrimination of heavy metal ions in aqueous solution based on three kinds of thiols as receptors. Anal Chem. 2018;90(7):4770–5.

    Article  CAS  Google Scholar 

  18. Joseph J, Schuster GB. Long-distance radical cation hop** in DNA: the effect of thymine−Hg(II)−thymine base pairs. Org Lett. 2007;9(10):1843–6.

    Article  CAS  Google Scholar 

  19. Kondo J, Tada Y, Dairaku T, Saneyoshi H, Okamoto I, Tanaka Y, et al. High-resolution crystal structure of a silver(I)-RNA hybrid duplex containing Watson-Crick-like C-silver(I)-C metallo-base pairs. Angew Chem Int Ed. 2015;54(45):13323–6.

    Article  CAS  Google Scholar 

  20. Naskar S, Guha R, Müller J. Metal-modified nucleic acids: metal-mediated base pairs, triples, and tetrads. Angew Chem Int Ed. 2020;59(4):1397–406.

    Article  CAS  Google Scholar 

  21. Jiang X, Xu W, Chen X, Liang Y. Colorimetric assay for ultrasensitive detection of Ag(I) ions based on the formation of gold nanoparticle oligomers. Anal Bioanal Chem. 2019;411(11):2439–45.

    Article  CAS  Google Scholar 

  22. Lee JS, Ulmann PA, Han MS, Mirkin CA. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett. 2008;8(2):529–33.

    Article  CAS  Google Scholar 

  23. Chen P, Sawyer E, Sun K, Zhang X, Chen C, Ying B, et al. A general strategy for label-free homogeneous bioassays based on selective recognition and silver ion-mediated conformational switch. Talanta. 2019;201:9–15.

    Article  CAS  Google Scholar 

  24. Ding J, Qin W, Zhang Y, Wang X. Potentiometric aptasensing based on target-induced conformational switch of a DNA probe using a polymeric membrane silver ion-selective electrode. Biosens Bioelectron. 2013;45:148–51.

    Article  CAS  Google Scholar 

  25. Zhang J, Lan T, Lu Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trac-Trend Anal Chem. 2020;124:115782.

    Article  CAS  Google Scholar 

  26. Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron. 2016;78:315–20.

    Article  CAS  Google Scholar 

  27. Wolfe MG, Ali MM, Brennan JD. Enzymatic litmus test for selective colorimetric detection of C–C single nucleotide polymorphisms. Anal Chem. 2019;91(7):4735–40.

    Article  CAS  Google Scholar 

  28. Zheng Y, Yang C, Yang F, Yang X. Real-time study of interactions between cytosine-cytosine pairs in DNA oligonucleotides and silver ions using dual polarization interferometry. Anal Chem. 2014;86(8):3849–55.

    Article  CAS  Google Scholar 

  29. Guo Y, Yang K, Sun J, Wu J, Ju H. A pH-responsive colorimetric strategy for DNA detection by acetylcholinesterase catalyzed hydrolysis and cascade amplification. Biosens Bioelectron. 2017;94:651–6.

    Article  CAS  Google Scholar 

  30. Mazzei L, Cianci M, Gonzalez Vara A, Ciurli S. The structure of urease inactivated by Ag(i): a new paradigm for enzyme inhibition by heavy metals. Dalton Trans. 2018;47(25):8240–7.

    Article  CAS  Google Scholar 

  31. Li S, Zhao X, Yu X, Wan Y, Yin M, Zhang W, et al. Fe3O4 nanozymes with aptamer-tuned catalysis for selective colorimetric analysis of ATP in blood. Anal Chem. 2019;91(22):14737–42.

    Article  CAS  Google Scholar 

  32. Jiang G, Zhu W, Shen X, Xu L, Li X, Wang R, et al. Colorimetric and visual determination of adenosine triphosphate using a boronic acid as the recognition element, and based on the deaggregation of gold nanoparticles. Microchimi Acta. 2017;184(11):4305–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the staff at the Department of Oncology at the First Affiliated Hospital of Nan**g Medical University, Nan**g, China, for providing the human serum samples used for validation purposes. The authors gratefully acknowledge reagent support from Prof. Genxi Li.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81972484), The High-Level Innovation Team of Nan**g Medical University (JX102GSP201727), and The National Key Research and Development Program of China (ZDZX2017ZL-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Li or Yongmei Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Statement of ethical approval

All patient samples were acquired from Department of Oncology at the First Affiliated Hospital of Nan**g Medical University. The use of the discarded human serum samples was approved by the First Affiliated Hospital of Nan**g Medical University Institutional Review Board under protocol #2019-SRFA-132.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Yang, Y., Li, M. et al. A pH-responsive bioassay for sensitive colorimetric detection of adenosine triphosphate based on switchable DNA aptamer and metal ion–urease interactions. Anal Bioanal Chem 413, 1533–1540 (2021). https://doi.org/10.1007/s00216-020-03136-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03136-z

Keywords

Navigation